Scaled Gaussian Stochastic Process for Computer Model Calibration and Prediction

We consider the problem of calibrating an imperfect computer model using experimental data. To compensate for the misspecification of the computer model and make more accurate predictions, a discre...

[1]  Daniel W. Apley,et al.  Improving Identifiability in Model Calibration Using Multiple Responses , 2012, DAC 2011.

[2]  Victor De Oliveira,et al.  Objective Bayesian analysis of spatial data with measurement error , 2007 .

[3]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[4]  Peter Z. G. Qian,et al.  Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments , 2008, Technometrics.

[5]  James O. Berger,et al.  Robust Gaussian stochastic process emulation , 2017, The Annals of Statistics.

[6]  Danilo L. Lopes,et al.  Development and Implementation of Bayesian Computer Model Emulators , 2011 .

[7]  Paul D. Arendt,et al.  Quantification of model uncertainty: Calibration, model discrepancy, and identifiability , 2012 .

[8]  James O. Berger,et al.  RobustGaSP: Robust Gaussian Stochastic Process Emulation in R , 2018, R J..

[9]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[10]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[11]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[12]  Curtis B. Storlie,et al.  A frequentist approach to computer model calibration , 2014, 1411.4723.

[13]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[14]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[15]  James O. Berger,et al.  Modularization in Bayesian analysis, with emphasis on analysis of computer models , 2009 .

[16]  K. Anderson,et al.  Abundant carbon in the mantle beneath Hawai‘i , 2017 .

[17]  Mengyang Gu Gu,et al.  Robust Uncertainty Quantification and Scalable Computation for Computer Models with Massive Output , 2016 .

[18]  M. Plumlee Bayesian Calibration of Inexact Computer Models , 2017 .

[19]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[20]  James O. Berger,et al.  Parallel partial Gaussian process emulation for computer models with massive output , 2016 .

[21]  James O. Berger,et al.  Using Statistical and Computer Models to Quantify Volcanic Hazards , 2009, Technometrics.

[22]  K. Anderson,et al.  Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012 , 2016 .

[23]  Rui Paulo Default priors for Gaussian processes , 2005 .

[24]  Jeong Soo Park Tuning complex computer codes to data and optimal designs , 1992 .

[25]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  C. F. Wu,et al.  Efficient Calibration for Imperfect Computer Models , 2015, 1507.07280.

[28]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[29]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[30]  By Rui Tuo A THEORETICAL FRAMEWORK FOR CALIBRATION IN COMPUTER MODELS : PARAMETRIZATION , ESTIMATION AND CONVERGENCE PROPERTIES , 2013 .

[31]  Mengyang Gu Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection , 2018, Bayesian Analysis.