Completeness and Consistency Analysis for Evolving Knowledge Bases

Abstract Assessing the quality of an evolving knowledge base is a challenging task as it often requires to identify correct quality assessment procedures. Since data is often derived from autonomous, and increasingly large data sources, it is impractical to manually curate the data, and challenging to continuously and automatically assess their quality. In this paper, we explore two main areas of quality assessment related to evolving knowledge bases: (i) identification of completeness issues using knowledge base evolution analysis, and (ii) identification of consistency issues based on integrity constraints, such as minimum and maximum cardinality, and range constraints. For the completeness analysis, we use data profiling information from consecutive knowledge base releases to estimate completeness measures that allow predicting quality issues. Then, we perform consistency checks to validate the results of the completeness analysis using integrity constraints and learning models. The approach has been tested both quantitatively and qualitatively by using a subset of datasets from both DBpedia and 3cixty knowledge bases. The performance of the approach is evaluated using precision, recall, and F1 score. From completeness analysis, we observe a 94% precision for the English DBpedia KB and 95% precision for the 3cixty Nice KB. We also assessed the performance of our consistency analysis by using five learning models over three sub-tasks, namely minimum cardinality, maximum cardinality, and range constraint. We observed that the best performing model in our experimental setup is Random Forest, reaching an F1 score greater than 90% for minimum and maximum cardinality and 84% for range constraints.

[1]  Marco Torchiano,et al.  RDF shape induction using knowledge base profiling , 2018, SAC.

[2]  Alexander Hall,et al.  HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm , 2013, EDBT '13.

[3]  David W. Embley,et al.  Cardinality Constraints in Semantic Data Models , 1993, Data Knowl. Eng..

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  Boris Motik,et al.  Bridging the gap between OWL and relational databases , 2007, WWW '07.

[6]  Raphaël Troncy,et al.  The Semantic Web: ESWC 2014 Satellite Events , 2014, Lecture Notes in Computer Science.

[7]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[8]  Christoph Lange,et al.  Quality Assessment of Linked Datasets Using Probabilistic Approximation , 2015, ESWC.

[9]  Heiko Paulheim,et al.  Improving the Quality of Linked Data Using Statistical Distributions , 2014, Int. J. Semantic Web Inf. Syst..

[10]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[11]  Philippe Flajolet,et al.  Adaptive Sampling , 1997 .

[12]  Jens Lehmann,et al.  TripleCheckMate: A Tool for Crowdsourcing the Quality Assessment of Linked Data , 2013, KESW.

[13]  Jürgen Umbrich,et al.  Towards Dataset Dynamics: Change Frequency of Linked Open Data Sources , 2010, LDOW.

[14]  Maria-Esther Vidal,et al.  Analyzing Linked Data Quality with LiQuate , 2013, OTM Workshops.

[15]  Jack E. Olson,et al.  Data Quality: The Accuracy Dimension , 2003 .

[16]  Christoph Lange,et al.  Evaluating the quality of the LOD cloud: An empirical investigation , 2018, Semantic Web.

[17]  Thomas Gottron,et al.  Perplexity of Index Models over Evolving Linked Data , 2014, ESWC.

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Bernhard Pfahringer,et al.  Random model trees: an effective and scalable regression method , 2010 .

[20]  Erik M. van Mulligen,et al.  Training text chunkers on a silver standard corpus: can silver replace gold? , 2011, BMC Bioinformatics.

[21]  Maribel Acosta,et al.  Detecting Linked Data quality issues via crowdsourcing: A DBpedia study , 2018, Semantic Web.

[22]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[23]  Tudor Groza,et al.  SemVersion: RDF-based ontology versioning system , 2006 .

[24]  Asunción Gómez-Pérez,et al.  Collaborative Ontology Evolution and Data Quality - An Empirical Analysis , 2016, OWLED.

[25]  Julian Szymanski,et al.  RDF dataset profiling - a survey of features, methods, vocabularies and applications , 2018, Semantic Web.

[26]  Christoph Lange,et al.  Luzzu—A Methodology and Framework for Linked Data Quality Assessment , 2016, JDIQ.

[27]  Heiko Paulheim,et al.  Fast Approximate A-Box Consistency Checking Using Machine Learning , 2016, ESWC.

[28]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[29]  Nigel Collier,et al.  Using silver and semi-gold standard corpora to compare open named entity recognisers , 2013, 2013 IEEE International Conference on Bioinformatics and Biomedicine.

[30]  Deborah L. McGuinness,et al.  OWL Web ontology language overview , 2004 .

[31]  Jens Lehmann,et al.  Test-driven evaluation of linked data quality , 2014, WWW.

[32]  Christian Bizer,et al.  Quality-driven information filtering using the WIQA policy framework , 2009, J. Web Semant..

[33]  Suzanne M. Embury,et al.  On the Feasibility of Crawling Linked Data Sets for Reusable Defect Corrections , 2014, LDQ@SEMANTICS.

[34]  David A. Freedman,et al.  Statistical Models: Theory and Practice: References , 2005 .

[35]  Asunción Gómez-Pérez,et al.  Loupe - An Online Tool for Inspecting Datasets in the Linked Data Cloud , 2015, SEMWEB.

[36]  Christos Pateritsas,et al.  Towards a Framework for Managing Evolving Information Resources on the Data Web , 2014, PROFILES@ESWC.

[37]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[38]  Ansgar Scherp,et al.  Information-theoretic Analysis of Entity Dynamics on the Linked Open Data Cloud , 2016, PROFILES@ESWC.

[39]  Christian Bizer,et al.  Sieve: linked data quality assessment and fusion , 2012, EDBT-ICDT '12.

[40]  Michel C. A. Klein,et al.  Ontology Versioning and Change Detection on the Web , 2002, EKAW.

[41]  Heiko Paulheim,et al.  Knowledge graph refinement: A survey of approaches and evaluation methods , 2016, Semantic Web.

[42]  Yuanyuan Li,et al.  Probabilistic Error Detecting in Numerical Linked Data , 2015, DEXA.

[44]  Raphaël Troncy,et al.  Roomba: An Extensible Framework to Validate and Build Dataset Profiles , 2015, ESWC.

[45]  Kyu-Young Whang,et al.  A linear-time probabilistic counting algorithm for database applications , 1990, TODS.

[46]  Martin Hepp,et al.  Swiqa - a semantic web information quality assessment framework , 2011, ECIS.

[47]  Jens Lehmann,et al.  Quality assessment for Linked Data: A Survey , 2015, Semantic Web.

[48]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[49]  Jürgen Umbrich,et al.  Dataset Dynamics Compendium: A Comparative Study , 2010, COLD.

[50]  Raphaël Troncy,et al.  3cixty: Building comprehensive knowledge bases for city exploration , 2017, J. Web Semant..

[51]  Jiao Tao,et al.  Extending OWL with Integrity Constraints , 2010, Description Logics.

[52]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[53]  Peter F. Patel-Schneider,et al.  Using Description Logics for RDF Constraint Checking and Closed-World Recognition , 2014, AAAI.

[54]  Marco Torchiano,et al.  A quality assessment approach for evolving knowledge bases , 2019, Semantic Web.

[55]  Dimitris Kontokostas,et al.  Linked Data Quality: Identifying and Tackling the Key Challenges , 2014, LDQ@SEMANTiCS.

[56]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[57]  Andreas Harth,et al.  Weaving the Pedantic Web , 2010, LDOW.

[58]  Giri Kumar Tayi,et al.  Examining data quality , 1998, CACM.

[59]  María Poveda-Villalón,et al.  OWL: - Experiences and Directions - Reasoner Evaluation - 13th International Workshop, OWLED 2016, and 5th International Workshop, ORE 2016, Bologna, Italy, November 20, 2016, Revised Selected Papers , 2017, OWLED.

[60]  Christoph Lange,et al.  A Preliminary Investigation Towards Improving Linked Data Quality Using Distance-Based Outlier Detection , 2016, JIST.

[61]  Andrea Maurino,et al.  Capturing the Age of Linked Open Data: Towards a Dataset-Independent Framework , 2012, 2012 IEEE Sixth International Conference on Semantic Computing.

[62]  Felix Naumann,et al.  Data profiling revisited , 2014, SGMD.

[63]  Vassilis Christophides,et al.  High-level change detection in RDF(S) KBs , 2013, TODS.

[64]  Guido Moerkotte,et al.  Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[65]  Heiko Paulheim,et al.  Detection of Relation Assertion Errors in Knowledge Graphs , 2017, K-CAP.

[66]  Jürgen Umbrich,et al.  Observing Linked Data Dynamics , 2013, ESWC.

[67]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[68]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.