On the Ermakov systems and nonlocal symmetries

Symmetry analysis of Ermakov systems has attracted enormous treatments in recent times. In this paper we consider three classes of the Ermakov systems and obtain their nonlocal symmetries using a simple algebraic reduction process. We observed that these nonlocal symmetries are new to the literature.

[1]  D. Towers Solvable Lie A-algebras , 2009, 0904.0924.

[2]  F. Arunaye,et al.  On the Ermanno-Bernoulli and Quasi-Ermanno-Bernoulli constants for linearizing dynamical systems , 2008 .

[3]  F. Arunaye On the Reduction Process of Nucci-Reduce Algorithm for Computing Nonlocal Symmetries of Dynamical Systems:A case study of the Kepler and Kepler-related problems , 2007, 0709.1936.

[4]  M. C. Nucci,et al.  Ermakov's Superintegrable Toy and Nonlocal Symmetries , 2005, nlin/0511055.

[5]  P. Leach,et al.  Generalised Symmetries and the Ermakov-Lewis Invariant , 2005 .

[6]  A. Kalkanlı,et al.  The Lie Algebra sl(2, R) and so-called Kepler-Ermakov Systems , 2004 .

[7]  M. C. Nucci,et al.  The Ermanno–Bernoulli constants and representations of the complete symmetry group of the Kepler problem , 2003 .

[8]  H. Yıldırım,et al.  On the Lie Symmetries of Kepler–Ermakov Systems , 2002, math-ph/0306037.

[9]  S. Simić A note on generalization of the Lewis invariant and the Ermakov systems , 2000 .

[10]  F. Haas,et al.  On the linearization of the generalized Ermakov systems , 1999, math-ph/0211036.

[11]  F. Haas,et al.  On the Lie symmetries of a class of generalized Ermakov systems , 1998, math-ph/0211031.

[12]  Maria Clara Nucci,et al.  The complete Kepler group can be derived by Lie group analysis , 1996 .

[13]  J. Krause,et al.  On the complete symmetry group of the classical Kepler system , 1994 .

[14]  C. Athorne Kepler-Ermakov problems , 1991 .

[15]  John R. Ray,et al.  More exact invariants for the time-dependent harmonic oscillator , 1979 .

[16]  Petrovich Vasilij Ermakov,et al.  Second-order differential equations: Conditions of complete integrability , 2008 .