Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance

Abstract In this first part of a two-part paper, a new active magnetic regenerator (AMR) laboratory apparatus is presented and evaluated. The setup is composed of a nested Halbach cylinder magnetic circuit (maximum magnetic flux density of 1.69 T) assembled in phase with a double effect displacer that provides the cold and hot blows to the regenerator. A single packed-bed regenerator with 195.5 g of gadolinium spheres is used in a discontinuous (i.e., reciprocating) cycle. The system performance is evaluated in terms of characteristic curves (i.e., cooling capacity as a function of temperature span), coefficient of performance and second-law efficiency as a function of the utilization factor and operating frequency. Maximum values of COP have been identified for a given temperature span. The maximum values of second-law efficiency were obtained at system temperature spans between 15 and 20 K.

[1]  R. Burriel,et al.  A comprehensive study of a versatile magnetic refrigeration demonstrator , 2016 .

[2]  Kurt Engelbrecht,et al.  Development of a novel rotary magnetic refrigerator. , 2015 .

[3]  Vitalij K. Pecharsky,et al.  Advanced magnetocaloric materials: What does the future hold? , 2006 .

[4]  Andrej Kitanovski,et al.  A comprehensive experimental analysis of gadolinium active magnetic regenerators , 2013 .

[5]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[6]  Andrew Rowe,et al.  Design improvements of a permanent magnet active magnetic refrigerator , 2014 .

[7]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[8]  Andrej Kitanovski,et al.  Magnetocaloric Energy Conversion: From Theory to Applications , 2015 .

[9]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[10]  Jader R. Barbosa,et al.  Performance evaluation of a magnetic refrigeration system , 2016 .

[11]  Jader R. Barbosa,et al.  Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses , 2016 .

[12]  Andrew Rowe,et al.  Configuration and performance analysis of magnetic refrigerators , 2011 .

[13]  Nini Pryds,et al.  An Experimental Study of Passive Regenerator Geometries , 2011 .

[14]  P. Trevizoli,et al.  Thermal–hydraulic evaluation of oscillating-flow regenerators using water: Experimental analysis of packed beds of spheres , 2016 .

[15]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[16]  Kaspar Kirstein Nielsen,et al.  Design and experimental tests of a rotary active magnetic regenerator prototype , 2015 .

[17]  P. Egolf,et al.  Thermodynamics of magnetic refrigeration , 2006 .

[18]  Kaspar Kirstein Nielsen,et al.  Materials Challenges for High Performance Magnetocaloric Refrigeration Devices , 2012 .

[19]  Ciro Aprea,et al.  The energy performances of a rotary permanent magnet magnetic refrigerator , 2016 .

[20]  Jader R. Barbosa,et al.  Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus ☆ , 2011 .

[21]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[22]  Anders Smith Who discovered the magnetocaloric effect? , 2013 .

[23]  N. Pryds,et al.  Review and comparison of magnet designs for magnetic refrigeration , 2010, 1409.8046.

[24]  Kaspar Kirstein Nielsen,et al.  Experimental results for a novel rotary active magnetic regenerator , 2012 .

[25]  Alvaro T. Prata,et al.  Performance analysis of a rotary active magnetic refrigerator , 2013 .

[26]  N. Pryds,et al.  An optimized magnet for magnetic refrigeration , 2010, 1410.1987.

[27]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[28]  Andrew Rowe,et al.  Permanent magnet magnetic refrigerator design and experimental characterization. , 2011 .

[29]  K.H.J. Buschow,et al.  A review on Mn based materials for magnetic refrigeration: Structure and properties , 2008 .

[30]  Jader R. Barbosa,et al.  Design of nested Halbach cylinder arrays for magnetic refrigeration applications , 2015 .

[31]  Andrew Rowe,et al.  Experimental assessment of the thermal–hydraulic performance of packed-sphere oscillating-flow regenerators using water , 2014 .