Randomness and preserved patterns in cancer network

Breast cancer has been reported to account for the maximum cases among all female cancers till date. In order to gain a deeper insight into the complexities of the disease, we analyze the breast cancer network and its normal counterpart at the proteomic level. While the short range correlations in the eigenvalues exhibiting universality provide an evidence towards the importance of random connections in the underlying networks, the long range correlations along with the localization properties reveal insightful structural patterns involving functionally important proteins. The analysis provides a benchmark for designing drugs which can target a subgraph instead of individual proteins.

[1]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[2]  Leonard I Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[3]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. Kanof,et al.  The Journal of Investigative Dermatology , 1967 .

[5]  H. Aburatani,et al.  Novel melanoma antigen, FCRL/FREB, identified by cDNA profile comparison using DNA chip are immunogenic in multiple melanoma patients , 2005, International journal of cancer.

[6]  Frank Tong,et al.  The Face of Controversy , 2001, Science.

[7]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[8]  Christopher A. Miller,et al.  A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. , 2009, Genome research.

[9]  V. Plerou,et al.  Random matrix approach to cross correlations in financial data. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[11]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[12]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[13]  Sarika Jalan,et al.  Randomness of random networks: A random matrix analysis , 2009 .

[14]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[15]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[16]  H. Mehdorn,et al.  Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases , 2005, Journal of Cancer Research and Clinical Oncology.

[17]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[18]  Editors-in-Chief C. Nicot Molecular Cancer , 2009 .

[19]  T. Papenbrock,et al.  Colloquium: Random matrices and chaos in nuclear spectra , 2007 .

[20]  S. Mane,et al.  K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension , 2011, Science.

[21]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[22]  M. King,et al.  Genetic Heterogeneity in Human Disease , 2010, Cell.

[23]  Sarika Jalan,et al.  Randomness, chaos, and structure , 2009, Complex..

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[26]  M. King,et al.  Novel Functional Screen for New Breast Cancer Genes , 2004 .

[27]  S. Minguzzi,et al.  An NTD‐Associated Polymorphism in the 3′ UTR of MTHFD1L can Affect Disease Risk by Altering miRNA Binding , 2014, Human mutation.

[28]  Daniel Birnbaum,et al.  ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. , 2007, Cell stem cell.

[29]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[30]  Zyczkowski,et al.  Random-matrix theory and eigenmodes of dynamical systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[31]  O. Valenta,et al.  Gynecologic oncology , 1990 .

[32]  E. Petricoin,et al.  Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[34]  Tong Zhou,et al.  Expression profiling of ion channel genes predicts clinical outcome in breast cancer , 2013, Molecular Cancer.

[35]  Qing‐Yu He,et al.  Proteomic analysis of a preneoplastic phenotype in ovarian surface epithelial cells derived from prophylactic oophorectomies. , 2005, Gynecologic oncology.

[36]  Pankaj Agarwal,et al.  A Pathway-Based View of Human Diseases and Disease Relationships , 2009, PloS one.

[37]  BMC Bioinformatics , 2005 .

[38]  J. Roth,et al.  Ohno's dilemma: Evolution of new genes under continuous selection , 2007, Proceedings of the National Academy of Sciences.

[39]  C. Y. Ung,et al.  Spectral analysis of gene co-expression network of Zebrafish , 2012, 1208.4668.

[40]  David G Camp,et al.  Comparison of normal and breast cancer cell lines using proteome, genome, and interactome data. , 2005, Journal of proteome research.

[41]  A. Pühler,et al.  Molecular systems biology , 2007 .

[42]  G. Yousef,et al.  Kallikrein gene downregulation in breast cancer , 2004, British Journal of Cancer.

[43]  Sarika Jalan,et al.  Emergence of clustering: role of inhibition. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Sarika Jalan,et al.  Spectral Properties of Directed Random Networks with Modular Structure , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  E. Hall,et al.  The nature of biotechnology. , 1988, Journal of biomedical engineering.

[46]  Y. Bar-Yam,et al.  Spectral analysis and the dynamic response of complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Pamela A Silver,et al.  Global analysis of mRNA splicing. , 2007, RNA.

[48]  Sarika Jalan,et al.  Universality in complex networks: random matrix analysis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  P. Sperryn,et al.  Blood. , 1989, British journal of sports medicine.

[50]  J. Ferlay,et al.  Estimates of the cancer incidence and mortality in Europe in 2006. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[51]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[52]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[53]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[54]  Martin T. Dove Structure and Dynamics , 2003 .

[55]  Stefan Wuchty,et al.  Important miRs of Pathways in Different Tumor Types , 2013, PLoS Comput. Biol..

[56]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[57]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[58]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[59]  Caroline C. Friedel,et al.  Influence of degree correlations on network structure and stability in protein-protein interaction networks , 2007, BMC Bioinformatics.

[60]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[61]  Z. Rudnick Quantum Chaos? , 2007 .

[62]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[63]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[64]  M. Montessori Nature in Education. , 2013 .

[65]  M J O'Hare,et al.  Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Arthur L. Beaudet,et al.  Identification of Chromatin Remodeling Genes Arid4a and Arid4b as Leukemia Suppressor Genes , 2008, Journal of the National Cancer Institute.

[67]  E. Diamandis,et al.  Proteomics Analysis of Conditioned Media from Three Breast Cancer Cell Lines , 2007, Molecular & Cellular Proteomics.

[68]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[69]  M. Tan,et al.  Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA , 2012, Nucleic acids research.

[70]  J. Ferlay,et al.  Estimates of cancer incidence and mortality in Europe in 1995. , 2002, European journal of cancer.

[71]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[72]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .