Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram

Literature shows that–under specific conditions–the Macroscopic Fundamental Diagram (MFD) describes a crisp relationship between the average flow (production) and the average density in an entire network. The limiting condition is that traffic conditions must be homogeneous over the whole network. Recent works describe hysteresis effects: systematic deviations from the MFD as a result of loading and unloading.

[1]  Hai Le Vu,et al.  Applications of the Generalized Macroscopic Fundamental Diagram , 2015 .

[2]  Markos Papageorgiou,et al.  Exploiting the fundamental diagram of urban networks for feedback-based gating , 2012 .

[3]  Serge P. Hoogendoorn,et al.  Empirics of a Generalized Macroscopic Fundamental Diagram for Urban Freeways , 2013 .

[4]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  J. Lebacque THE GODUNOV SCHEME AND WHAT IT MEANS FOR FIRST ORDER TRAFFIC FLOW MODELS , 1996 .

[6]  Nikolas Geroliminis,et al.  Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach , 2013, IEEE Transactions on Intelligent Transportation Systems.

[7]  N. Geroliminis,et al.  Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings - eScholarship , 2007 .

[8]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[9]  Dirk Cattrysse,et al.  A generic class of first order node models for dynamic macroscopic simulation of traffic flows , 2011 .

[10]  Carlos F. Daganzo,et al.  Urban Gridlock: Macroscopic Modeling and Mitigation Approaches , 2007 .

[11]  Serge P. Hoogendoorn,et al.  Two-Variable Macroscopic Fundamental Diagrams for Traffic Networks , 2013 .

[12]  H. M. Zhang,et al.  On the distribution schemes for determining flows through a merge , 2003 .

[13]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[14]  Yuxuan Ji,et al.  Spatial and Temporal Analysis of Congestion in Urban Transportation Networks , 2011 .

[15]  P. I. Richards Shock Waves on the Highway , 1956 .

[16]  Dirk Helbing,et al.  The spatial variability of vehicle densities as determinant of urban network capacity , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  C. Daganzo,et al.  Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability , 2011 .

[18]  H. Mahmassani,et al.  Exploring Properties of Networkwide Flow–Density Relations in a Freeway Network , 2012 .

[19]  Carlos F. Daganzo,et al.  Fundamentals of Transportation and Traffic Operations , 1997 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  I. Prigogine,et al.  A Two-Fluid Approach to Town Traffic , 1979, Science.

[22]  Victor L. Knoop,et al.  Influence of Road Layout on Network Fundamental Diagram , 2014 .

[23]  Nikolaos Geroliminis,et al.  Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic , 2011 .

[24]  C. Daganzo THE CELL TRANSMISSION MODEL.. , 1994 .

[25]  Meead Saberi,et al.  Urban Network Gridlock: Theory, Characteristics, and Dynamics , 2013 .

[26]  Hani S. Mahmassani,et al.  INVESTIGATION OF NETWORK-LEVEL TRAFFIC FLOW RELATIONSHIPS: SOME SIMULATION RESULTS , 1984 .

[27]  Christine Buisson,et al.  Exploring the Impact of Homogeneity of Traffic Measurements on the Existence of Macroscopic Fundamental Diagrams , 2009 .

[28]  Nikolas Geroliminis,et al.  Integrating the dynamics of heterogeneity in aggregated network modeling and control , 2014 .

[29]  S. P. Hoogendoorn,et al.  Routing Strategies Based on Macroscopic Fundamental Diagram , 2012 .

[30]  C. Daganzo,et al.  Effects of Turning Maneuvers and Route Choice on a Simple Network , 2011 .

[31]  Nikolaos Geroliminis,et al.  Perimeter and boundary flow control in multi-reservoir heterogeneous networks , 2013 .

[32]  C. Daganzo,et al.  Macroscopic Fundamental Diagrams for Freeway Networks: Theory and Observation , 2011 .

[33]  Vikash V. Gayah,et al.  On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram , 2014 .

[34]  Vikash V. Gayah,et al.  Clockwise Hysteresis Loops in the Macroscopic Fundamental Diagram , 2010 .

[35]  Lele Zhang,et al.  A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems , 2011, 1112.3761.