Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method

A temperature-dependent delay optimization model for a multilayered graphene nanoribbon (MLGNR) with top contact (TC-GNR), side contact (SC-GNR), and Cu-based nano-interconnects using a wire sizing method was applied to determine the delay for different interconnects widths (11 nm, 16 nm, and 22 nm) and lengths (10 μm, 50 μm, and 100 μm), being the first such model for TC-GNR, SC-GNR, and Cu interconnects applied at three different chip operating temperatures (233 K, 300 K, and 378 K). The results reveal that the SC-GNR requires ~ 3–6× and ~ 2–3× fewer repeaters w.r.t. the TC-GNR or Cu interconnect, and that the SC-GNR and Cu interconnects can achieve ~ 4–5× and ~ 2–2.5× reduction in repeater dimension compared with the TC-GNR interconnect. Meanwhile, the SC-GNR interconnect can achieve 73× less propagation delay w.r.t. the TC-GNR interconnect for interconnect width of 22 nm, interconnect length of 10 μm, and two different chip operating temperatures of 233 K and 300 K. Similarly, the Cu interconnect can achieve 6× less propagation delay w.r.t. the TC-GNR interconnect at interconnect width of 22 nm and 16 nm, interconnect length of 10 μm, and 300 K.

[1]  V. Kumar,et al.  Performance and Energy-per-Bit Modeling of Multilayer Graphene Nanoribbon Conductors , 2012, IEEE Transactions on Electron Devices.

[2]  A. Bid,et al.  Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: applicability of Bloch-Grüneisen theorem , 2006, cond-mat/0607674.

[3]  Eby G. Friedman,et al.  Optimum wire sizing of RLC interconnect with repeaters , 2004, Integr..

[4]  R. Murali,et al.  Resistivity of Graphene Nanoribbon Interconnects , 2009, IEEE Electron Device Letters.

[5]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[6]  Charles J. Alpert,et al.  Interconnect synthesis without wire tapering , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Hafizur Rahaman,et al.  Stability Analysis in Top-Contact and Side-Contact Graphene Nanoribbon Interconnects , 2017 .

[8]  Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects , 2016 .

[9]  Jason Cong,et al.  Optimal wiresizing under Elmore delay model , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  James D. Meindl,et al.  Performance Benchmarking for Graphene Nanoribbon, Carbon Nanotube, and Cu Interconnects , 2008, 2008 International Interconnect Technology Conference.

[11]  J. Meindl,et al.  Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects , 2007, IEEE Electron Device Letters.

[12]  Hafizur Rahaman,et al.  Reduced thickness interconnect model using GNR to avoid crosstalk effects , 2016 .

[13]  Qing Zhu,et al.  High-speed clock network sizing optimization based on distributed RC and lossy RLC interconnect models , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Hafizur Rahaman,et al.  Analysis of Simultaneous Switching Noise and IR-Drop in Side-Contact Multilayer Graphene Nanoribbon Power Distribution Network , 2018, J. Circuits Syst. Comput..

[15]  S. Nasiri,et al.  Stability Analysis in Graphene Nanoribbon Interconnects , 2010, IEEE Electron Device Letters.

[16]  Wei Wang,et al.  Monolithic graphene nanoribbon electronics for interconnect performance improvement , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[17]  Yehea Ismail,et al.  Figures of merit to characterize the importance of on-chip inductance , 1999 .

[18]  J.D. Meindl,et al.  Optimal interconnection circuits for VLSI , 1985, IEEE Transactions on Electron Devices.

[19]  C. Xu,et al.  Modeling, Analysis, and Design of Graphene Nano-Ribbon Interconnects , 2009, IEEE Transactions on Electron Devices.

[20]  Debaprasad Das,et al.  Analysis of delay fault in GNR power interconnects , 2018 .

[21]  D. Johnston,et al.  Structural, thermal, magnetic, and electronic transport properties of the LaNi₂(Ge1-xPx)₂ system , 2011, 1112.1864.

[22]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[23]  E. V. Meerwall,et al.  LOCAL MAGNETIC FIELDS IN THE VANADIUM--MANGANESE ALLOY SYSTEM. , 1971 .

[24]  Hao Gong,et al.  Low-contact-resistance graphene devices with nickel-etched-graphene contacts. , 2013, ACS nano.

[25]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  F. Catthoor,et al.  Technology/Circuit/System Co-Optimization and Benchmarking for Multilayer Graphene Interconnects at Sub-10-nm Technology Node , 2015, IEEE Transactions on Electron Devices.

[27]  R. Sharma,et al.  Analytical Time-Domain Models for Performance Optimization of Multilayer GNR Interconnects , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  J. Meindl,et al.  Compact Physics-Based Circuit Models for Graphene Nanoribbon Interconnects , 2009, IEEE Transactions on Electron Devices.

[29]  H. Rahaman,et al.  Modeling of IR-Drop induced delay fault in CNT and GNR power distribution networks , 2012, 2012 5th International Conference on Computers and Devices for Communication (CODEC).

[30]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .