Differential Forms in Lattice Field Theories: An Overview

We provide an overview on the application of the exterior calculus of differential forms to the ab initio formulation of lattice field theories, with a focus on irregular or “random” lattices.

[1]  Don Weingarten Geometric formulation of electrodynamics and general relativity in discrete space–time , 1977 .

[2]  D. Arnold Differential complexes and numerical stability , 2002, math/0212391.

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  R. Nicolaides,et al.  Covolume Solutions of Three-Dimensional Div-Curl Equations , 1997 .

[5]  B. Auchmann,et al.  A geometrically defined discrete hodge operator on simplicial cells , 2006, IEEE Transactions on Magnetics.

[6]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[7]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[8]  W. Graf Differential forms as spinors , 1978 .

[9]  F. Teixeira,et al.  Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations , 2011, IEEE Transactions on Antennas and Propagation.

[10]  A. S. Shvart︠s︡ Topology for physicists , 1994 .

[11]  W. Chew,et al.  Complex space approach to perfectly matched layers: a review and some new developments , 2000 .

[12]  J. S. Chen,et al.  The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations , 1997 .

[13]  Daniele Boffi Approximation of eigenvalues in mixed form, Discrete Compactness Property, and application to hp mixed finite elements , 2007 .

[14]  H. Wiedemann Particle accelerator physics , 1993 .

[15]  P.R. Kotiuga Theoretical Limitations of Discrete Exterior Calculus in the Context of Computational Electromagnetics , 2008, IEEE Transactions on Magnetics.

[16]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[17]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[18]  Annalisa Buffa,et al.  Innovative mimetic discretizations for electromagnetic problems , 2010, J. Comput. Appl. Math..

[19]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[20]  Rolf Schuhmann,et al.  Rigorous Analysis of Trapped Modes in Accelerating Cavities , 2000 .

[21]  F. Teixeira,et al.  Lattice models for large-scale simulations of coherent wave scattering. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Lauri Kettunen,et al.  Discrete spaces for div and curl-free fields , 1998 .

[23]  M. Feliziani,et al.  Mixed finite-difference/Whitney-elements time domain (FD/WE-TD) method , 1998 .

[24]  M. F. Iskander,et al.  A new 3D FDTD multigrid technique with dielectric traverse capabilities , 2001 .

[25]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[26]  Chandrajit L. Bajaj,et al.  Dual formulations of mixed finite element methods with applications , 2010, Comput. Aided Des..

[27]  Pavel B. Bochev,et al.  Compatible discretizations of second-order elliptic problems , 2006 .

[28]  A Coupled Thermo-Electromagnetic Formulation Based on the Cell Method , 2008, IEEE Transactions on Magnetics.

[29]  Thomas Weiland,et al.  A CONSISTENT SUBGRIDDING SCHEME FOR THE FINITE DIFFERENCE TIME DOMAIN METHOD , 1996 .

[30]  Werner Müller,et al.  Analytic torsion and R-torsion of Riemannian manifolds , 1978 .

[31]  Stanly Steinberg,et al.  A Discrete Vector Calculus in Tensor Grids , 2011, Comput. Methods Appl. Math..

[32]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[33]  O. Picon,et al.  A finite element method based on Whitney forms to solve Maxwell equations in the time domain , 1995 .

[34]  Rolf Schuhmann,et al.  A new Whitney-based material operator for the finite-integration technique on triangular grids , 2002 .

[35]  R.J. Luebbers,et al.  FDTD local grid with material traverse , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[36]  G. Deschamps Electromagnetics and differential forms , 1981, Proceedings of the IEEE.

[37]  D. Adams Theoretical foundation for the index theorem on the lattice with staggered fermions. , 2009, Physical review letters.

[38]  H. Whitney Geometric Integration Theory , 1957 .

[39]  M. Göckeler Dirac-Kähler fields and the lattice shape dependence of fermion flavour , 1983 .

[40]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[41]  S. Garcia,et al.  Simulation of the Transient Response of Objects Buried in Dispersive Media , 2002 .

[42]  A Three-Dimensional Time Domain Electromagnetic Particle-In-Cell Codeon Unstructured Grids , 2009 .

[43]  W. Chew,et al.  Differential Forms, Metrics, and the Reflectionless Absorption of Electromagnetic Waves , 1999 .

[44]  G. Molinari,et al.  A time-domain 3-D full-Maxwell solver based on the cell method , 2006, IEEE Transactions on Magnetics.

[45]  F. Wilczek,et al.  Lattice fermions. , 1987, Physical review letters.

[46]  Chiral Dirac Fermions on the Lattice using Geometric Discretisation , 2003, hep-lat/0309167.

[47]  M. Bullo,et al.  Isotropic and anisotropic electrostatic field computation by means of the cell method , 2004, IEEE Transactions on Magnetics.

[48]  W. Miller,et al.  The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics , 1991 .

[49]  Francesca Rapetti,et al.  Whitney Forms of Higher Degree , 2009, SIAM J. Numer. Anal..

[50]  F. Teixeira,et al.  Mixed $E$–$B$ Finite Elements for Solving 1-D, 2-D, and 3-D Time-Harmonic Maxwell Curl Equations , 2007, IEEE Microwave and Wireless Components Letters.

[51]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[52]  A. Bossavit,et al.  Differential forms and the computation of fields and forces in Electromagnetism 1 , 1991 .

[53]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[54]  Paul W. Gross,et al.  Electromagnetic Theory and Computation: A Topological Approach , 2004 .

[55]  S. Sternberg,et al.  Supersymmetry and equivariant de Rham theory , 1999 .

[56]  Construction of convergent simplicial approximations of quantum fields on Riemannian manifolds , 1990 .

[57]  Vadim Shapiro,et al.  A multivector data structure for differential forms and equations , 2000 .

[58]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[59]  Enzo Tonti On the Mathematical Structure of a Large Class of Physical Theories , 1971 .

[60]  F. Teixeira,et al.  Geometric finite element discretization of Maxwell equations in primal and dual spaces , 2005, physics/0503013.

[61]  Ryan Austin Chilton,et al.  H-, P- and T-Refinement Strategies for the Finite-Difference-Time-Domain (FDTD) Method Developed via Finite-Element (FE) Principles , 2008 .

[62]  Fabio Freschi,et al.  Multiphysics Problems via the Cell Method: The Role of Tonti Diagrams , 2010, IEEE Transactions on Magnetics.

[63]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[64]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[65]  R. Specogna,et al.  Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems , 2007, IEEE Transactions on Magnetics.

[66]  E. Tonti The reason for analogies between physical theories , 1976 .

[67]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[68]  T. Weiland On the Numerical Solution of Maxwell''s Equations and Applications in the Field of Accelerator Physi , 1984 .

[69]  Lauri Kettunen,et al.  Topological Approach to Computational Electromagnetism , 2001 .

[70]  Reading Whitney and Finite Elements With Hindsight , 2007, IEEE Transactions on Magnetics.

[71]  F. Teixeira Time-Domain Finite-Difference and Finite-Element Methods for Maxwell Equations in Complex Media , 2008, IEEE Transactions on Antennas and Propagation.

[72]  A. Bossavit 'Generalized Finite Differences' in Computational Electromagnetics , 2001 .

[73]  Eric Sonnendrücker,et al.  SPLINE DISCRETE DIFFERENTIAL FORMS. , 2012 .

[74]  M. Guarnieri,et al.  Nonlinear coupled thermo-electromagnetic problems with the cell method , 2006, IEEE Transactions on Magnetics.

[75]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[76]  W. L. Burke Applied Differential Geometry , 1985 .

[77]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[78]  Daniel A. White,et al.  A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids , 2005 .

[79]  M. Shashkov,et al.  Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .

[80]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[81]  Tore G. Halvorsen,et al.  A simplicial gauge theory , 2010, 1006.2059.

[82]  Weng Cho Chew,et al.  Unified analysis of perfectly matched layers using differential forms , 1999 .

[83]  Norman H. Christ,et al.  Gauge theory on a random lattice , 1982 .

[84]  Rolf Schuhmann,et al.  Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme , 1998 .

[85]  Weng Cho Chew,et al.  PML-FDTD in cylindrical and spherical grids , 1997 .

[86]  Alain Bossavit,et al.  Computational electromagnetism and geometry : (5):The "Galerkin hodge" , 2000 .

[87]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[88]  F. Teixeira,et al.  Differential Forms, Galerkin Duality, and Sparse Inverse Approximations in Finite Element Solutions of Maxwell Equations , 2007, IEEE Transactions on Antennas and Propagation.

[89]  J. Rabin Homology theory of lattice fermion doubling , 1982 .

[90]  V. Minerva,et al.  Use of barycentric dual grids for the solution of frequency domain problems by FIT , 2004, IEEE Transactions on Magnetics.

[91]  Ralf Hiptmair,et al.  HIGHER ORDER WHITNEY FORMS , 2001 .

[92]  M. Shashkov,et al.  The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .

[93]  Ralf Hiptmair,et al.  Discrete Hodge operators , 2001, Numerische Mathematik.

[94]  F. Teixeira,et al.  Conformal Perfectly Matched Layer for the Mixed Finite Element Time-Domain Method , 2008, IEEE Transactions on Antennas and Propagation.

[95]  A. Bossavit Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .

[96]  Homa Karimabadi,et al.  Event-driven, hybrid particle-in-cell simulation: A new paradigm for multi-scale plasma modeling , 2006, J. Comput. Phys..

[97]  Anil N. Hirani,et al.  Discrete exterior calculus for variational problems in computer vision and graphics , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[98]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[99]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[100]  Daniel A. White,et al.  Development and Application of Compatible Discretizations of Maxwell’s Equations , 2006 .

[101]  C. Mattiussi An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .

[102]  Rafael D. Sorkin,et al.  The electromagnetic field on a simplicial net , 1975 .

[103]  Daniel A. White,et al.  A Discrete Differential Forms Framework for Computational Electromagnetism , 2004 .

[104]  Hartmut Wittig,et al.  Lattice gauge theory , 1999 .

[105]  F. Teixeira,et al.  Sparse and explicit FETD via approximate inverse Hodge (mass) matrix , 2006, IEEE Microwave and Wireless Components Letters.

[106]  Scott O. Wilson Cochain algebra on manifolds and convergence under refinement , 2007 .

[107]  Weng Cho Chew,et al.  ELECTROMAGNETIC THEORY ON A LATTICE , 1994 .

[108]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[109]  S. Albeverio,et al.  Abelian Chern-Simons theory and linking numbers via oscillatory integrals , 1995 .

[110]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Maxwell's Equations and the Equations of Magnetic Diffusion - Abstract , 2001 .

[111]  Bo Zhang,et al.  An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations , 2002 .

[112]  André D. Bandrauk,et al.  Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling , 2011, Comput. Phys. Commun..

[113]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[114]  Simplicial gauge theory and quantum gauge theory simulation , 2011, 1107.1405.

[115]  Thomas Weiland,et al.  On the Numerical Solution of Maxwell's Equations and Applications in Accelerator Physics , 1984 .

[116]  P. Becher,et al.  The Dirac-Kähler equation and fermions on the lattice , 1982 .

[117]  F. Teixeira,et al.  On the Degrees of Freedom of Lattice Electrodynamics , 2008 .

[118]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[119]  Scott O. Wilson Differential forms, fluids, and finite models , 2011, 1102.2245.

[120]  F. Teixeira,et al.  Compatible discretizations of Maxwell equations , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[121]  Weng Cho Chew,et al.  Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves , 1998 .

[122]  F. Teixeira Geometric Aspects of the Simplicial Discretization of Maxwell's Equations , 2001 .

[123]  A. Yavari On geometric discretization of elasticity , 2008 .

[124]  E. Tonti Finite Formulation of the Electromagnetic Field , 2001 .

[125]  U(2) four-dimensional simplicial lattice gauge theory , 1984 .

[126]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[127]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[128]  Time reversal, fermion doubling, and the masses of lattice Dirac fermions in three dimensions , 2011, 1104.2645.

[129]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[130]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[131]  F. Teixeira Erratum: Differential form approach to the analysis of electromagnetic cloaking and masking , 2007 .

[132]  James C. Sexton,et al.  Geometric discretization scheme applied to the Abelian Chern-Simons theory , 2000, hep-th/0001030.

[133]  Fernando L. Teixeira,et al.  On causality and dynamic stability of perfectly matched layers for FDTD simulations , 1999 .

[134]  Lie-Quan Lee,et al.  State of the art in electromagnetic modeling for the Compact Linear Collider , 2009 .

[135]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[136]  J. Blair Perot,et al.  Higher-order mimetic methods for unstructured meshes , 2006, J. Comput. Phys..

[137]  Alan H. Guth,et al.  Existence Proof of a Nonconfining Phase in Four-Dimensional U(1) Lattice Gauge Theory , 1980 .

[138]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[139]  D. Friedan A proof of the Nielsen-Ninomiya theorem , 1982 .

[140]  John E. Bolander,et al.  Irregular lattice model for quasistatic crack propagation , 2005 .

[141]  Paul W. Gross,et al.  Data Structures for Geometric and Topological Aspects of Finite Element Algorithms , 2001 .

[142]  J. Castillo,et al.  Steady state diffusion problems on non-trivial domains: support operator method integrated with direct optimized grid generation , 2002 .

[143]  The Dirac equation in exterior form , 1985 .

[144]  P. R. Kotiuga Metric dependent aspects of inverse problems and functionals based on helicity , 1993 .

[145]  R. Specogna,et al.  Discrete Geometric Formulation of Admittance Boundary Conditions for Frequency Domain Problems Over Tetrahedral Dual Grids , 2012, IEEE Transactions on Antennas and Propagation.

[146]  C. Mattiussi The geometry of time-stepping , 2001 .

[147]  John P. Verboncoeur,et al.  Charge conservation in electromagnetic PIC codes; spectral comparison of Boris/DADI and Langdon-Marder methods , 1997 .

[148]  Pavel B. Bochev,et al.  Solving PDEs with Intrepid , 2012, Sci. Program..

[149]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[150]  C. J. Railton,et al.  Passive equivalent circuit of FDTD: an application to subgridding , 1997 .