Comments on "Perturbation bounds for root-clustering of linear systems in a specified second order subregion"

This paper comments on the results of the above mentioned paper by Bakker-Luo-Johnson (ibid. vol.40 (1995)). We note that Theorems 3.1 and 4.1 are incorrectly stated, i.e., they are not valid for the non-/spl Omega/-transformable regions. The results cannot cover the ride quality region listed in Table 1 since it is a non-/spl Omega/-transformable region.

[1]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[2]  Kamal Premaratne,et al.  Robust stability of time-variant interval matrices , 1990, 29th IEEE Conference on Decision and Control.

[3]  Takehiro Mori,et al.  Convergence property of interval matrices and interval polynomials , 1987 .

[4]  Eugenius Kaszkurewicz,et al.  Robust stabilization of time-varying discrete interval systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[5]  Leang S. Shieh,et al.  A general theory for analysis and design of robust pole clustering in subregions of the complex plane , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[6]  M. Mansour Robust stability of interval matrices , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[7]  Eugenius Kaszkurewicz,et al.  Robust, diagonal and D-stability via QLF's: The discrete-time case , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  P. Bauer,et al.  A necessary and sufficient condition for robust asymptotic stability of time-variant discrete systems , 1993, IEEE Trans. Autom. Control..

[10]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[11]  J. S. Luo,et al.  Perturbation bounds for root-clustering of linear systems in a specified second order subregion , 1995, IEEE Trans. Autom. Control..

[12]  E. Kaszkurewicz,et al.  Robust stability and diagonal Liapunov functions , 1990, 29th IEEE Conference on Decision and Control.

[13]  M. Araki Application of M-matrices to the stability problems of composite dynamical systems , 1975 .

[14]  Qing-Guo Wang Necessary and sufficient conditions for stability of a matrix polytope with normal vertex matrices , 1991, Autom..

[15]  Chao-Shun Zhou,et al.  Stability analysis of gray discrete-time systems , 1989 .

[16]  S. Gutman,et al.  A general theory for matrix root-clustering in subregions of the complex plane , 1981 .

[17]  Robert K. Brayton,et al.  Stability of dynamical systems: A constructive approach , 1979 .

[18]  Gregory E. Coxson,et al.  The P-matrix problem is co-NP-complete , 1994, Math. Program..

[19]  M. Vidyasagar On matrix measures and convex Liapunov functions , 1978 .

[20]  S. Barnett,et al.  A note on matrix equations and root location , 1975 .

[21]  A. Bhaya,et al.  Equivalence of stability concepts for discrete time‐varying systems , 1994 .

[22]  F. L. Bauer Optimally scaled matrices , 1963 .

[23]  E. Kaszkurewicz,et al.  Robust stability and diagonal Lyapunov functions , 1993 .