Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors.

[1]  G. Mackinney,et al.  ABSORPTION OF LIGHT BY CHLOROPHYLL SOLUTIONS , 1941 .

[2]  T. Goodwin Chemistry and biochemistry of plant pigments , 1976 .

[3]  Yuan-Kun Lee,et al.  ACCUMULATION OF ASTAXANTHIN IN HAEMATOCOCCUS LACUSTRIS (CHLOROPHYTA) 1 , 1991 .

[4]  A. Vonshak,et al.  Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1 , 1991 .

[5]  B. Gandul-Rojas,et al.  Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by high-performance liquid chromatography , 1992 .

[6]  S. Nagai,et al.  Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis , 1992 .

[7]  E. Molina Grima,et al.  Outdoor chemostat culture of Phaeodactylum tricornutum UTEX 640 in a tubular photobioreactor for the production of eicosapentaenoic acid , 1994, Biotechnology and Applied Biochemistry.

[8]  Yuan-Kun Lee,et al.  EFFECT OF DISSOLVED OXYGEN PARTIAL PRESSURE ON THE ACCUMULATION OF ASTAXANTHIN IN CHEMOSTAT CULTURES OF HAEMATOCOCCUS LACUSTRIS (CHLOROPHYTA) , 1995 .

[9]  A. Young,et al.  Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis , 1996 .

[10]  P Bongrand,et al.  Interest of image processing in cell biology and immunology. , 1997, Journal of immunological methods.

[11]  N. Nishio,et al.  Morphological changes in the life cycle of the green alga Haematococcus pluvialis , 1997 .

[12]  A. Chiralt,et al.  Influence of roasting temperature on physicochemical properties of different coffees , 1998 .

[13]  J. Sevilla,et al.  Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance , 1998, Biotechnology and bioengineering.

[14]  Feng Chen,et al.  Influence of medium components on astaxanthin content and production of Haematococcus pluvialis , 1998 .

[15]  Production of astaxanthin in Haematococcus pluvialis cultured in various media. , 1999 .

[16]  F Chen,et al.  Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis , 1999, Journal of Industrial Microbiology and Biotechnology.

[17]  D. Wulf,et al.  Measuring muscle color on beef carcasses using the L*a*b* color space. , 1999, Journal of animal science.

[18]  E. Molina Grima,et al.  Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures , 1999 .

[19]  S. Boussiba Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response , 2000 .

[20]  L Logendra,et al.  Correlation of lycopene measured by HPLC with the L, a, b color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. , 2000, Journal of agricultural and food chemistry.

[21]  J. D. del Campo,et al.  Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). , 2000, Journal of biotechnology.

[22]  R T Lorenz,et al.  Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. , 2000, Trends in biotechnology.

[23]  A. Otero,et al.  Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. , 2001, Journal of biotechnology.

[24]  Gokare A. Ravishankar,et al.  Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions , 2002 .

[25]  R. Nagabhushanam,et al.  Biomaterials and bioprocessing , 2003 .

[26]  Miguel Olaizola,et al.  Haematococcus astaxanthin: applications for human health and nutrition. , 2003, Trends in biotechnology.

[27]  A. Otero,et al.  Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions , 1996, Biotechnology Letters.

[28]  M. Tredici,et al.  From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms , 1992, Journal of Applied Phycology.

[29]  Feng Chen,et al.  Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses , 1999, Biotechnology Letters.

[30]  M. Borowitzka,et al.  Culture of the astaxanthin-producing green algaHaematococcus pluvialis 1. Effects of nutrients on growth and cell type , 1991, Journal of Applied Phycology.

[31]  D. Chaumont,et al.  Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle , 1995, Journal of Applied Phycology.

[32]  J. Abalde,et al.  Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth , 2001, Biotechnology Letters.

[33]  Norihiko Hata,et al.  Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture , 2001, Journal of Applied Phycology.

[34]  A. Richmond,et al.  A new tubular reactor for mass production of microalgae outdoors , 1993, Journal of Applied Phycology.

[35]  Miguel Olaizola,et al.  Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors , 2000, Journal of Applied Phycology.

[36]  Emilio Molina,et al.  Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply , 2005 .

[37]  F. G. Acién,et al.  Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. , 2005, Biotechnology and bioengineering.

[38]  Shiro Nagai,et al.  Hyper-accumulation of astaxanthin in a green algaHaematococcus pluvialis at elevated temperatures , 1994, Biotechnology Letters.

[39]  J. Abalde,et al.  Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. , 2005, Bioresource technology.

[40]  F. G. Acién,et al.  Continuous production of green cells of Haematococcus pluvialis: Modeling of the irradiance effect , 2006 .