TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis

[1]  T. Tsunoda,et al.  KIF1A mutation in a patient with progressive neurodegeneration , 2014, Journal of Human Genetics.

[2]  C. Fallet-Bianco,et al.  Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly , 2014, Acta neuropathologica communications.

[3]  T. Furukawa,et al.  Whole-exome sequencing identifies a de novo TUBA1A mutation in a patient with sporadic malformations of cortical development: a case report , 2014, BMC Research Notes.

[4]  N. Boddaert,et al.  The wide spectrum of tubulinopathies: what are the key features for the diagnosis? , 2014, Brain : a journal of neurology.

[5]  A. Fry,et al.  The genetics of lissencephaly , 2014, American journal of medical genetics. Part C, Seminars in medical genetics.

[6]  Laurie E. Seltzer,et al.  De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy. , 2014, American journal of human genetics.

[7]  E. Bertini,et al.  Description of a novel TUBA1A mutation in Arg-390 associated with asymmetrical polymicrogyria and mid-hindbrain dysgenesis. , 2013, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[8]  L. Lagae,et al.  A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. , 2013, American journal of human genetics.

[9]  D. Zélénika,et al.  Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly , 2013, Nature Genetics.

[10]  A. Okumura,et al.  Lissencephaly with marked ventricular dilation, agenesis of corpus callosum, and cerebellar hypoplasia caused by TUBA1A mutation , 2013, Brain and Development.

[11]  Martin W. Breuss,et al.  Mutations in the β-Tubulin Gene TUBB5 Cause Microcephaly with Structural Brain Abnormalities , 2012, Cell reports.

[12]  N. Boddaert,et al.  Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria , 2012, European Journal of Human Genetics.

[13]  R. Kuzniecky,et al.  A developmental and genetic classification for malformations of cortical development: update 2012 , 2012, Brain : a journal of neurology.

[14]  Mohan L Gupta,et al.  Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. , 2011, Current opinion in genetics & development.

[15]  S. Seneca,et al.  TUBA1A mutations , 2011, Neurology.

[16]  C. Fallet-Bianco,et al.  Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. , 2010, Human molecular genetics.

[17]  D. Keays,et al.  Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. , 2010, Human molecular genetics.

[18]  Kenneth H Downing,et al.  Structural basis of interprotofilament interaction and lateral deformation of microtubules. , 2010, Structure.

[19]  Ravinesh A. Kumar,et al.  TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins , 2010, Human molecular genetics.

[20]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[21]  T. Meitinger,et al.  Human TUBB3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, and Axon Guidance , 2010, Cell.

[22]  J. Chelly,et al.  Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. , 2009, Trends in genetics : TIG.

[23]  A. Jackson,et al.  Diversifying microtubules in brain development , 2009, Nature Genetics.

[24]  H. Omran,et al.  Refining the phenotype of α‐1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly , 2008, Clinical genetics.

[25]  L. Lagae,et al.  Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations , 2008, Journal of Medical Genetics.

[26]  J. Gleeson,et al.  Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. , 2007, Trends in genetics : TIG.

[27]  D. Keays,et al.  Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A) , 2007, Human mutation.

[28]  C. Liang,et al.  In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro , 2007, Nature Protocols.

[29]  Steve D. M. Brown,et al.  Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans , 2007, Cell.

[30]  E. Nogales,et al.  Refined structure of alpha beta-tubulin at 3.5 A resolution. , 2001, Journal of molecular biology.

[31]  F. Bloom,et al.  Isotypes of alpha-tubulin are differentially regulated during neuronal maturation , 1987, The Journal of cell biology.

[32]  A. Fry,et al.  Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. , 2013, Brain : a journal of neurology.

[33]  A. Represa,et al.  Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria , 2011 .

[34]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[35]  Donald E. Ingber,et al.  Jcb: Article Introduction , 2002 .