PRESCRIPTION FRAUD DETECTION VIA DATA MINING: A METHODOLOGY PROPOSAL

[1]  Diane Lambert,et al.  Detecting fraud in the real world , 2002 .

[2]  John A. Major,et al.  EFD: A Hybrid Knowledge/Statistical-Based System for the Detection of Fraud , 2002 .

[3]  Richard E. Overill,et al.  Design of an artificial immune system as a novel anomaly detector for combating financial fraud in the retail sector , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[4]  Dean P. Foster,et al.  Variable Selection in Data Mining , 2004 .

[5]  Raymond T. Ng,et al.  A unified approach for mining outliers , 1997, CASCON.

[6]  Joos Vandewalle,et al.  A hybrid system for fraud detection in mobile communications , 1999, ESANN.

[7]  Charles Elkan,et al.  Magical thinking in data mining: lessons from CoIL challenge 2000 , 2001, KDD '01.

[8]  Salvatore J. Stolfo,et al.  Distributed data mining in credit card fraud detection , 1999, IEEE Intell. Syst..

[9]  Douglas L. Reilly,et al.  Credit card fraud detection with a neural-network , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[10]  Erland Jonsson,et al.  Synthesizing test data for fraud detection systems , 2003, 19th Annual Computer Security Applications Conference, 2003. Proceedings..

[11]  Graham J. Williams Evolutionary Hot Spots Data Mining - An Architecture for Exploring for Interesting Discoveries , 1999, PAKDD.

[12]  Gadi Pinkas,et al.  Unsupervised Profiling for Identifying Superimposed Fraud , 1999, PKDD.

[13]  Min-Jung Kim,et al.  A Neural Classifier with Fraud Density Map for Effective Credit Card Fraud Detection , 2002, IDEAL.

[14]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[15]  Forrest W. Young,et al.  Introduction to Multidimensional Scaling: Theory, Methods, and Applications , 1981 .

[16]  Constantin von Altrock,et al.  Fuzzy Logic and NeuroFuzzy Applications in Business and Finance , 1996 .

[17]  P. Brockett,et al.  Using Kohonen's Self-Organizing Feature Map to Uncover Automobile Bodily Injury Claims Fraud , 1998 .

[18]  Pedro A. Ortega,et al.  A Medical Claim Fraud/Abuse Detection System based on Data Mining: A Case Study in Chile , 2006, DMIN.

[19]  Rajendra P. Srivastava,et al.  Detection of Management Fraud: A Neural Network Approach , 1995 .

[20]  P. Bentley,et al.  Fuzzy Darwinian Detection of Credit Card Fraud , 2000 .

[21]  Rong-Chang Chen,et al.  Detecting Credit Card Fraud by Using Questionnaire-Responded Transaction Model Based on Support Vector Machines , 2004, IDEAL.

[22]  Damminda Alahakoon,et al.  Minority report in fraud detection: classification of skewed data , 2004, SKDD.

[23]  Xin Yao,et al.  Application of Genetic Algorithm and k-Nearest Neighbour Method in Medical Fraud Detection , 1998, SEAL.

[24]  Graham J. Wills,et al.  Dynamic Graphics for Exploring Spatial Data with Application to Locating Global and Local Anomalies , 1991 .

[25]  John Shawe-Taylor,et al.  An Unsupervised Neural Network Approach to Profiling the Behavior of Mobile Phone Users for Use in Fraud Detection , 2001, J. Parallel Distributed Comput..

[26]  D. Hand,et al.  Unsupervised Profiling Methods for Fraud Detection , 2002 .

[27]  Ruben H. Zamar,et al.  Robust space transformations for distance-based operations , 2001, KDD '01.

[28]  Chang-Tien Lu,et al.  Algorithms for spatial outlier detection , 2003, Third IEEE International Conference on Data Mining.

[29]  Jionghua Jin,et al.  A survey on statistical methods for health care fraud detection , 2008, Health care management science.

[30]  Patrick L. Brockett,et al.  Fraud Classification Using Principal Component Analysis of Ridits , 2002 .

[31]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[32]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers , 2002, Intell. Data Anal..

[33]  Jimmy McGibney,et al.  An Approach to Rules based Fraud Management in Emerging Converged Networks , 2003 .

[34]  J. Stuart Aitken,et al.  Multiple algorithms for fraud detection , 2000, Knowl. Based Syst..

[35]  Rüdiger W. Brause,et al.  Neural data mining for credit card fraud detection , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[36]  Nada Lavrac,et al.  Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving , 2004, Machine Learning.

[37]  Christos Faloutsos,et al.  LOCI: fast outlier detection using the local correlation integral , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[38]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[39]  Linden J. Ball,et al.  Using ethnography to design a mass detection tool (MDT) for the early discovery of insurance fraud , 2003, CHI Extended Abstracts.

[40]  Corinna Cortes,et al.  Signature-Based Methods for Data Streams , 2001, Data Mining and Knowledge Discovery.

[41]  B. Stefano,et al.  Insurance fraud evaluation: a fuzzy expert system , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[42]  Suran Asitha Goonatilake,et al.  Intelligent Systems for Finance and Business , 1995 .

[43]  M. D. Beneish,et al.  Detecting GAAP violation: implications for assessing earnings management among firms with extreme financial performance , 1997 .

[44]  Corinna Cortes,et al.  Computational Methods for Dynamic Graphs , 2003 .

[45]  Graham J. Williams,et al.  On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.

[46]  Hyun-Chul Kim,et al.  Constructing support vector machine ensemble , 2003, Pattern Recognit..

[47]  San-Yih Hwang,et al.  A process-mining framework for the detection of healthcare fraud and abuse , 2006, Expert Syst. Appl..

[48]  Yizhak Idan,et al.  Discovery of fraud rules for telecommunications—challenges and solutions , 1999, KDD '99.

[49]  Chieh-Yuan Tsai,et al.  A Web services-based collaborative scheme for credit card fraud detection , 2004, IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004.

[50]  Joseph V. Carcello,et al.  A Decision Aid for Assessing the Likelihood of Fraudulent Financial Reporting , 2000 .

[51]  Tom Fawcett,et al.  "In vivo" spam filtering: a challenge problem for KDD , 2003, SKDD.

[52]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[53]  Michael J. Rothman,et al.  Applying Data Mining Techniques to a Health Insurance Information System , 1996, VLDB.

[54]  Mercedes Ayuso,et al.  Modelling different types of automobile insurance fraud behaviour in the Spanish market , 1999 .

[55]  B. Green,et al.  Assessing the risk of management fraud through neural network technology , 1997 .

[56]  M Syeda,et al.  Parallel granular neural networks for fast credit card fraud detection , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[57]  El-Bachir Belhadji,et al.  A Model for the Detection of Insurance Fraud , 2000 .

[58]  Kazuo J. Ezawa,et al.  Constructing Bayesian Networks to Predict Uncollectible Telecommunications Accounts , 1996, IEEE Expert.

[59]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers: algorithms and applications (a summary of results) , 2001, KDD '01.

[60]  Guido Dedene,et al.  A case study of applying boosting naive Bayes to claim fraud diagnosis , 2004, IEEE Transactions on Knowledge and Data Engineering.

[61]  Bertis B. Little,et al.  Collusion in the U.S. crop insurance program: applied data mining , 2002, KDD.

[62]  Hong Zhao,et al.  Applying data mining to detect fraud behavior in customs declaration , 2002, Proceedings. International Conference on Machine Learning and Cybernetics.

[63]  Dino Pedreschi,et al.  A classification-based methodology for planning audit strategies in fraud detection , 1999, KDD '99.

[64]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[65]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[66]  Robert Haining,et al.  Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[67]  Anna M. Manning,et al.  On Minimal Infrequent Itemset Mining , 2007, DMIN.

[68]  Navneet Vidyarthi,et al.  A Fuzzy-Based Algorithm for Auditors to Detect Element of Fraud in Settled Insurance Claims , 2003 .

[69]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[70]  Wei Fan,et al.  Systematic data selection to mine concept-drifting data streams , 2004, KDD.

[71]  Graham J. Williams,et al.  Mining the Knowledge Mine: The Hot Spots Methodology for Mining Large Real World Databases , 1997, Australian Joint Conference on Artificial Intelligence.

[72]  Peter J. Bentley,et al.  "Evolutionary, my dear Watson" - Investigating Committee-based Evolution of Fuzzy Rules for the Detection of Suspicious Insurance Claims , 2000, GECCO.

[73]  Mark I. Hwang,et al.  A fuzzy neural network for assessing the risk of fraudulent financial reporting , 2003 .

[74]  Tom Fawcett,et al.  Adaptive Fraud Detection , 1997, Data Mining and Knowledge Discovery.

[75]  J. Sweeney,et al.  Fraudulently Misstated Financial Statements and Insider Trading: An Empirical Analysis , 1997 .

[76]  Kay I Penny,et al.  A comparison of multivariate outlier detection methods for clinical laboratory safety data , 2001 .

[77]  Ping Chen,et al.  Using the fractal dimension to cluster datasets , 2000, KDD '00.

[78]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.