Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrödinger equations

[1]  Govind P. Agrawal,et al.  Contemporary Nonlinear Optics , 2012 .

[2]  Juncheng Wei,et al.  Spikes in Two-component Systems of Nonlinear Schrodinger Equations with Trapping Potentials , 2006 .

[3]  R. Wu,et al.  Homoclinic orbits for perturbed coupled nonlinear Schrödinger equations , 2006 .

[4]  A. Pomponio Coupled nonlinear Schrödinger systems with potentials , 2005, math/0506010.

[5]  Tai-Chia Lin,et al.  Ground State of N Coupled Nonlinear Schrödinger Equations in Rn,n≤3 , 2005 .

[6]  Y. Li Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbations , 2001, math/0106194.

[7]  Chris H. Greene,et al.  Hartree-Fock Theory for Double Condensates , 1997 .

[8]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[9]  Jalal Shatah,et al.  PERSISTENT HOMOCLINIC ORBITS FOR A PERTURBED NONLINEAR SCHRODINGER EQUATION , 1996 .

[10]  Jean Bourgain,et al.  Construction of approximative and almost periodic solutions of perturbed linear schrödinger and wave equations , 1996 .

[11]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[12]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[13]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[14]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[15]  W. Strauss Nonlinear invariant wave equations , 1978 .

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.