How the individual human mobility spatio-temporally shapes the disease transmission dynamics

[1]  D. Bloom,et al.  Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response , 2019, Front. Immunol..

[2]  Sen Pei,et al.  Forecasting the spatial transmission of influenza in the United States , 2018, Proceedings of the National Academy of Sciences.

[3]  Nan Zhang,et al.  A human behavior integrated hierarchical model of airborne disease transmission in a large city , 2017, Building and Environment.

[4]  Ying-Cheng Lai,et al.  Universal model of individual and population mobility on diverse spatial scales , 2017, Nature Communications.

[5]  Gail E. Potter,et al.  Household members do not contact each other at random: implications for infectious disease modelling , 2017, bioRxiv.

[6]  Cécile Viboud,et al.  Human mobility and the spatial transmission of influenza in the United States , 2017, PLoS Comput. Biol..

[7]  Wen-Xu Wang,et al.  Effects of human dynamics on epidemic spreading in Côte d’Ivoire , 2016, 1605.00899.

[8]  Marc Barthelemy,et al.  A stochastic model of randomly accelerated walkers for human mobility , 2015, Nature Communications.

[9]  Luca Pappalardo,et al.  Human Mobility Modelling: Exploration and Preferential Return Meet the Gravity Model , 2016, ANT/SEIT.

[10]  Dino Pedreschi,et al.  Returners and explorers dichotomy in human mobility , 2015, Nature Communications.

[11]  R. Menezes,et al.  The effect of recency to human mobility , 2015, EPJ Data Science.

[12]  Ingemar J. Cox,et al.  Optimizing Hybrid Spreading in Metapopulations , 2014, Scientific Reports.

[13]  V. Gemmetto,et al.  Mitigation of infectious disease at school: targeted class closure vs school closure , 2014, BMC Infectious Diseases.

[14]  Zbigniew Smoreda,et al.  On the Use of Human Mobility Proxies for Modeling Epidemics , 2013, PLoS Comput. Biol..

[15]  V. Colizza,et al.  Human mobility and time spent at destination: impact on spatial epidemic spreading. , 2013, Journal of theoretical biology.

[16]  S. Ellner,et al.  Human mobility patterns predict divergent epidemic dynamics among cities , 2013, Proceedings of the Royal Society B: Biological Sciences.

[17]  Zbigniew Smoreda,et al.  Unravelling daily human mobility motifs , 2013, Journal of The Royal Society Interface.

[18]  R. Metzler,et al.  Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions , 2013 .

[19]  Zhen Wang,et al.  How human location-specific contact patterns impact spatial transmission between populations? , 2013, Scientific Reports.

[20]  A. Vespignani,et al.  Competition among memes in a world with limited attention , 2012, Scientific Reports.

[21]  Kazuyuki Aihara,et al.  Safety-Information-Driven Human Mobility Patterns with Metapopulation Epidemic Dynamics , 2012, Scientific Reports.

[22]  Vito Latora,et al.  Understanding mobility in a social petri dish , 2011, Scientific Reports.

[23]  Alessandro Vespignani,et al.  Modeling human mobility responses to the large-scale spreading of infectious diseases , 2011, Scientific reports.

[24]  Tao Zhou,et al.  Impact of Heterogeneous Human Activities on Epidemic Spreading , 2011, ArXiv.

[25]  Alessandro Vespignani,et al.  Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic , 2011, PloS one.

[26]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[27]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[28]  Alessandro Vespignani,et al.  Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model , 2010, J. Comput. Sci..

[29]  Alessandro Vespignani,et al.  Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models , 2010, BMC infectious diseases.

[30]  S. Merler,et al.  The role of population heterogeneity and human mobility in the spread of pandemic influenza , 2010, Proceedings of the Royal Society B: Biological Sciences.

[31]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[32]  Ming Tang,et al.  Epidemic spreading by objective traveling , 2009 .

[33]  Shunjiang Ni,et al.  Impact of travel patterns on epidemic dynamics in heterogeneous spatial metapopulation networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[35]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[36]  Kate E. Jones,et al.  Global trends in emerging infectious diseases , 2008, Nature.

[37]  Alessandro Vespignani,et al.  Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. , 2007, Journal of theoretical biology.

[38]  M. Keeling,et al.  Modeling Infectious Diseases in Humans and Animals , 2007 .

[39]  H. Stanley,et al.  Gravity model in the Korean highway , 2007, 0710.1274.

[40]  C. Fraser Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic , 2007, PloS one.

[41]  Joshua M. Epstein,et al.  Controlling Pandemic Flu: The Value of International Air Travel Restrictions , 2007, PloS one.

[42]  Alessandro Vespignani,et al.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions , 2007, PLoS medicine.

[43]  A. Vespignani,et al.  The Modeling of Global Epidemics: Stochastic Dynamics and Predictability , 2006, Bulletin of mathematical biology.

[44]  W. Edmunds,et al.  Delaying the International Spread of Pandemic Influenza , 2006, PLoS medicine.

[45]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[46]  P. Hosseini,et al.  Seasonality and the dynamics of infectious diseases. , 2006, Ecology letters.

[47]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[48]  Alessandro Vespignani,et al.  Prediction and predictability of global epidemics: the role of the airline transportation network , 2005, q-bio/0507029.

[49]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[50]  P. Sheng,et al.  Theory and Simulations , 2003 .

[51]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[52]  J. Dushoff,et al.  The effects of population heterogeneity on disease invasion. , 1995, Mathematical biosciences.

[53]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[54]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[55]  R. C. Macridis A review , 1963 .