Hessian recovery for finite element methods

In this article, we propose and analyze an effective Hessian recovery strategy for the Lagrangian finite element of arbitrary order $k$. We prove that the proposed Hessian recovery preserves polynomials of degree $k+1$ on general unstructured meshes and superconverges at rate $O(h^k)$ on mildly structured meshes. In addition, the method preserves polynomials of degree $k+2$ on translation invariant meshes and produces a symmetric Hessian matrix when the sampling points for recovery are selected with symmetry. Numerical examples are presented to support our theoretical results.

[1]  Zhimin Zhang,et al.  Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..

[2]  J. Dompierre,et al.  Numerical comparison of some Hessian recovery techniques , 2007 .

[3]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  Weizhang Huang,et al.  How a Nonconvergent Recovered Hessian Works in Mesh Adaptation , 2014, SIAM J. Numer. Anal..

[6]  John R. Whiteman,et al.  Superconvergent recovery operators: derivative recovery techniques , 1998 .

[7]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[8]  Zhimin Zhang,et al.  Polynomial preserving recovery for quadratic elements on anisotropic meshes , 2012 .

[9]  Michael Neilan Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the Monge-Ampère equation , 2014, J. Comput. Appl. Math..

[10]  Paul-Louis George,et al.  A Numerical Study of Some Hessian Recovery Techniques on Isotropic and Anisotropic Meshes , 2011, SIAM J. Sci. Comput..

[11]  L. Evans,et al.  Partial Differential Equations , 1941 .

[12]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[13]  Michel Fortin,et al.  On a new edge‐based gradient recovery technique , 2013 .

[14]  R. Firth Function , 1955, Yearbook of Anthropology.

[15]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[16]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[17]  Pedro Morin,et al.  On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..

[18]  Omar Lakkis,et al.  A Finite Element Method for Nonlinear Elliptic Problems , 2011, SIAM J. Sci. Comput..

[19]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[22]  Zhimin Zhang,et al.  Function Value Recovery and Its Application in Eigenvalue Problems , 2012, SIAM J. Numer. Anal..

[23]  J. E. Akin,et al.  Superconvergent second derivative recovery technique and its application in a nonlocal damage mechanics model , 2013 .

[24]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[25]  Jeffrey S. Ovall F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions * , 2022 .

[26]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[27]  Yuri V. Vassilevski,et al.  On a discrete Hessian recovery for P 1 finite elements , 2002, J. Num. Math..

[28]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[29]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[30]  Omar Lakkis,et al.  A Finite Element Method for Second Order Nonvariational Elliptic Problems , 2010, SIAM J. Sci. Comput..

[31]  Weiming Cao,et al.  Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes , 2014, Math. Comput..