Nanorobot for treatment of patients with artery occlusion

This paper presents the study of nanorobots control activation for stenosed coronary occlusion, with the practical use of chemical and thermal gradients for biomedical problems. The recent developments on nanotechnology new materials allied with electronics device miniaturization may enable nanorobots for the next few years. New possibilities for medicine are expected with the development of nanorobots. It may help to advance the treatment of a wide number of diseases: cardiovascular problems, neurosurgery, cancer, diabetes and new cell therapies. The implementation of new methodologies to help on manufacturing analyses and system design for the development of nanoscale molecular machine is one of the most important fields for research. The use of 3D physically based simulation in conjunction with clinical data may provide ways to design practical approaches for control and transducers development.

[1]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[2]  Bijan Shirinzadeh,et al.  Computational Nanomechatronics: A Pathway for Control and Manufacturing Nanorobots , 2006, 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06).

[3]  M. Gao,et al.  Electric field directed layer-by-layer assembly of highly fluorescent CdTe nanoparticles. , 2001, Journal of nanoscience and nanotechnology.

[4]  A. Krall,et al.  A scalable embedded DSP core for SoC applications , 2004, 2004 International Symposium on System-on-Chip, 2004. Proceedings..

[5]  Narayanan Vijaykrishnan,et al.  Design of a nanosensor array architecture , 2004, GLSVLSI '04.

[6]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[7]  M. Ogawa,et al.  Preliminary study of calibration-free continuous glucose monitoring with microdialysis technique , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[8]  Werner Weber Ambient intelligence: industrial research on a visionary concept , 2003, ISLPED '03.

[9]  Roland Stracke,et al.  Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system , 2000 .

[10]  Tad Hogg,et al.  Modeling and mathematical analysis of swarms of microscopic robots , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[11]  R. Gauthier,et al.  Evaluation of ESD characteristics for 65 nm SOI technology , 2005, 2005 IEEE International SOI Conference Proceedings.

[12]  Hubert Trzaska,et al.  Electromagnetic Field Measurements in the Near Field , 2000 .

[13]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Geeta M Patel,et al.  Nanorobot: A versatile tool in nanomedicine , 2006, Journal of drug targeting.

[15]  P Toutouzas,et al.  Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. , 2001, Journal of the American College of Cardiology.

[16]  D. Scheinberg,et al.  Tumor Therapy with Targeted Atomic Nanogenerators , 2001, Science.

[17]  Glenn Fishbine The Investor's Guide to Nanotechnology & Micromachines , 2002 .

[18]  Aristides A. G. Requicha Nanorobots, NEMS, and nanoassembly , 2003 .

[19]  Heinz Wörn,et al.  Parallel on-line motion planning for industrial robots , 1998 .

[20]  S. Martel,et al.  Adapting MRI systems to propel and guide microdevices in the human blood circulatory system , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[21]  Florin Udrea,et al.  SOI CMOS gas sensors , 2002, Proceedings of IEEE Sensors.

[22]  J. Pendry,et al.  Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks , 2001 .

[23]  W. Liu,et al.  Design and evaluation of integrated electromagnetic power passives with vertical surface interconnections , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[24]  M N Ravi Kumar,et al.  Nano and microparticles as controlled drug delivery devices. , 2000, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[25]  Tad Hogg,et al.  Nanorobot Communication Techniques: A Comprehensive Tutorial , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[26]  P. Couvreur,et al.  Nanotechnology: Intelligent Design to Treat Complex Disease , 2006, Pharmaceutical Research.

[27]  C. Menolfi,et al.  Effect of body contacts on high-speed circuits in 90 nm CMOS SOI technology , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[28]  Carlo D. Montemagno,et al.  Constructing Organic/Inorganic NEMS Devices Powered by Biomolecular Motors , 2000 .

[29]  Roger J. Narayan,et al.  Pulsed laser deposition of functionally gradient diamondlike carbon–metal nanocomposites , 2005 .

[30]  Eran Socher,et al.  Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors , 1998 .

[31]  Charles Sfeir,et al.  Nanostructured ceramics in medical devices: Applications and prospects , 2004 .

[32]  Joe C. Campbell,et al.  CMOS-compatible photodetector fabricated on thick SOI having deep implanted electrodes , 2002 .

[33]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[34]  山本 広光 Transcardiac gradient of soluble adhesion molecules predicts progression of coronary artery disease , 2003 .

[35]  Rajiv V. Joshi,et al.  Design and CAD Challenges in sub-90nm CMOS Technologies , 2003, ICCAD.

[36]  Louis L. Whitcomb,et al.  Underwater robotics: out of the research laboratory and into the field , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[37]  Nathan S. Lewis,et al.  Cross-Reactive Chemical Sensor Arrays , 2000 .

[38]  Adriano Cavalcanti Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine , 2003 .

[39]  R. Penner,et al.  Molybdenum nanowires by electrodeposition. , 2000, Science.

[40]  L. Geppert,et al.  The amazing vanishing transistor act , 2002 .

[41]  H. Baltes,et al.  Industrial fabrication technology for CMOS infrared sensor arrays , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[42]  T. Kuroi,et al.  Scaling of shallow trench isolation with stress control for 65nm node and beyond , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[43]  W.J. Li,et al.  Ultra-low-power polymer thin film encapsulated carbon nanotube thermal sensors , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[44]  Fumihito Arai,et al.  Prototyping design and automation of micro/nano manipulation system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[45]  Skandar Basrour,et al.  Design and fabrication of piezoelectric micro power generators for autonomous microsystems , 2005 .

[46]  P Toutouzas,et al.  Heat production of atherosclerotic plaques and inflammation assessed by the acute phase proteins in acute coronary syndromes. , 2000, Journal of molecular and cellular cardiology.

[47]  T. Hogg,et al.  Nanorobotics System Simulation in 3D Workspaces with Low Reynolds Number , 2006, 2006 IEEE International Symposium on MicroNanoMechanical and Human Science.

[48]  N. Lewis,et al.  Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose. , 2000, Journal of combinatorial chemistry.

[49]  Raymond A. Paul,et al.  The distributed time-triggered simulation scheme facilitated by TMO programming , 2001, Fourth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing. ISORC 2001.

[50]  Nikolaj Gadegaard,et al.  Cell signaling arising from nanotopography: implications for nanomedical devices. , 2006, Nanomedicine.

[51]  John Raeburn Just One Word: Plastics , 1997 .

[52]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[53]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[54]  T. Hogg,et al.  Nanorobots As Cellular Assistants in Inflammatory Responses , 2003 .

[55]  F. Favier,et al.  Size-selective electrodeposition of meso-scale metal particles: a general method , 2001 .

[56]  George D. Skidmore,et al.  Theoretical Analysis of Diamond Mechanosynthesis. Part III. Positional C 2 Deposition on Diamond C(110) Surfac eUsin gSi/Ge/Sn-Base dDime rPlacemen tTools , 2006 .

[57]  U. Ikeda,et al.  Inflammatory cytokines and cardiovascular disease. , 2003, Current drug targets. Inflammation and allergy.

[58]  Ralph Etienne-Cummings,et al.  A Time-Series Novelty Detection Chip for Sonar , 2004, Int. J. Robotics Autom..

[59]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part III—Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery , 2006, Neurosurgery.

[60]  Manoj Sachdev,et al.  Design of a 1.7-GHz low-power delay-fault-testable 32-b ALU in 180-nm CMOS technology , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[61]  E. Purcell Life at Low Reynolds Number , 2008 .

[62]  Leonard M. AdlemanyDepartment On Constructing a Molecular Computer Draft , 1995 .

[63]  I. Del Villar,et al.  ESA-based in-fiber nanocavity for hydrogen-peroxide detection , 2005, IEEE Transactions on Nanotechnology.

[64]  Robert A. Freitas,et al.  Nanomedicine, Volume I: Basic Capabilities , 1999 .

[65]  William Francis Ganong,et al.  Review of Medical Physiology , 1969 .

[66]  Said F. Al-Sarawi,et al.  Investigation into the future of RFID in biomedical applications , 2003, SPIE Microtechnologies.

[67]  Chun Xu,et al.  Platelet near-wall excess in porcine whole blood in artery-sized tubes under steady and pulsatile flow conditions. , 2004, Biorheology.

[68]  Itamar Willner,et al.  Glucose oxidase electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors , 1999 .

[69]  R. K. Hansen,et al.  A 3D Underwater Acoustic Camera — Properties and Applications , 1996 .

[70]  Warren W Wood Nanobots: a new paradigm for hydrogeologic characterization? , 2005, Ground water.

[71]  Masami Hagiya,et al.  From Molecular Computing to Molecular Programming , 2000, DNA Computing.

[72]  A. Cavalcanti,et al.  Nanorobotics control design: a collective behavior approach for medicine , 2005, IEEE Transactions on NanoBioscience.

[73]  Reginald M. Penner,et al.  Sensors from electrodeposited metal nanowires , 2002 .

[74]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[75]  Mehmet C. Oz,et al.  Beating Heart Catheter-Based Edge-to-Edge Mitral Valve Procedure in a Porcine Model: Efficacy and Healing Response , 2004, Circulation.

[76]  S. K. Moore Just one word - plastics [organic semiconductors] , 2002 .

[77]  Leonard M. Adleman,et al.  On constructing a molecular computer , 1995, DNA Based Computers.

[78]  Kaustav Banerjee,et al.  Performance analysis of carbon nanotube interconnects for VLSI applications , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..