Penetrator reliability investigation and design exploration : from conventional design processes to innovative uncertainty-capturing algorithms.

This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.

[1]  Esteban B. Marin,et al.  Parametric studies of penetration events : a design and analysis of experiments approach. , 2005 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[3]  Tamara G. Kolda,et al.  Asynchronous parallel pattern search for nonlinear optimization , 2000 .

[4]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[5]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[6]  Sandia Report,et al.  Revisiting Asynchronous Parallel Pattern Search for Nonlinear Optimization , 2004 .

[7]  Robert Michael Lewis,et al.  On the Local Convergence of Pattern Search , 2003, SIAM J. Optim..

[8]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[9]  S. Nash A multigrid approach to discretized optimization problems , 2000 .

[10]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[11]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[12]  Christopher M. Siefert,et al.  Model-Assisted Pattern Search , 2000 .

[13]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[14]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[15]  Laura Painton Swiler,et al.  Response Surface (Meta-model) Methods and Applications , 2005 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[18]  Virginia Torczon,et al.  PDS: Direct Search Methods for Unconstrained Optimization on Either Sequential or Parallel Machines , 1992 .

[19]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[20]  Tamara G. Kolda,et al.  Understanding Asynchronous Parallel Pattern Search , 2003 .

[21]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[22]  M. Gibbs,et al.  Efficient implementation of gaussian processes , 1997 .

[23]  Werner Goldsmith,et al.  Non-ideal projectile impact on targets , 1999 .

[24]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[25]  Tamara G. Kolda,et al.  On the Convergence of Asynchronous Parallel Pattern Search , 2002, SIAM J. Optim..

[26]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[27]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[28]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[29]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[30]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[31]  Laura Painton Swiler Gaussian Processes in Response Surface Modeling , 2005 .

[32]  Tamara G. Kolda,et al.  Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization , 2006, TOMS.

[33]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[34]  William Gropp,et al.  User's Guide for mpich, a Portable Implementation of MPI Version 1.2.2 , 1996 .

[35]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[36]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[37]  N. Hjort,et al.  Topics in Spatial Statistics , 1992 .

[38]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[39]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[40]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[41]  Robert B. Gramacy,et al.  Bayesian treed gaussian process models , 2005 .

[42]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .