On the operation of machines powered by quantum non-thermal baths

Diverse models of engines energised by quantum-coherent, hence non-thermal, baths allow the engine efficiency to transgress the standard thermodynamic Carnot bound. These transgressions call for an elucidation of the underlying mechanisms. Here we show that non-thermal baths may impart not only heat, but also mechanical work to a machine. The Carnot bound is inapplicable to such a hybrid machine. Intriguingly, it may exhibit dual action, concurrently as engine and refrigerator, with up to 100% efficiency. We conclude that even though a machine powered by a quantum bath may exhibit an unconventional performance, it still abides by the traditional principles of thermodynamics.

[1]  Mark Fannes,et al.  Entanglement boost for extractable work from ensembles of quantum batteries. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  F. Illuminati,et al.  Entanglement in continuous-variable systems: recent advances and current perspectives , 2007, quant-ph/0701221.

[3]  G. Milburn,et al.  Nonclassical States of Light and Mechanics , 2012, 1211.2594.

[4]  C. Fiolhais,et al.  Variational formulation of the Vlasov equation , 1987 .

[5]  G. Kurizki,et al.  Work and energy gain of heat-pumped quantized amplifiers , 2013, 1306.1472.

[6]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[7]  Jian Zou,et al.  Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system's work capability. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[9]  Kurt Jacobs,et al.  Quantum effects improve the energy efficiency of feedback control. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Eric Lutz,et al.  Energetics of quantum correlations , 2008, 0803.4067.

[11]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[12]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[13]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[14]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[15]  A. E. Allahverdyan,et al.  Maximal work extraction from finite quantum systems , 2004 .

[16]  Ali Ü. C. Hardal,et al.  Superradiant Quantum Heat Engine , 2015, Scientific Reports.

[17]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[18]  Gershon Kurizki,et al.  Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines , 2015, Entropy.

[19]  T. Nieuwenhuizen,et al.  Bath-assisted cooling of spins. , 2004, Physical review letters.

[20]  Eric Lutz,et al.  Efficiency of heat engines coupled to nonequilibrium reservoirs , 2013, 1303.6558.

[21]  A. Lenard Thermodynamical proof of the Gibbs formula for elementary quantum systems , 1978 .

[22]  Elliott H. Lieb,et al.  A Fresh Look at Entropy and the Second Law of Thermodynamics , 2000 .

[23]  M. A. Cayless Statistical Mechanics (2nd edn) , 1977 .

[24]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[25]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[26]  E. Lutz,et al.  Information: From Maxwell’s demon to Landauer’s eraser , 2015 .

[27]  A. Mann,et al.  Thermal Coherent States and Thermal Squeezed States , 1991 .

[28]  Xiaolong Su,et al.  Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. , 2006, Physical review letters.

[29]  M. Wallquist,et al.  Single-atom cavity QED and optomicromechanics , 2009, 0912.4424.

[30]  Vitus Händchen,et al.  Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. , 2010, Physical review letters.

[31]  Kurizki,et al.  Enhanced squeezing by periodic frequency modulation under parametric instability conditions. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[32]  U. Seifert,et al.  Coherence-enhanced efficiency of feedback-driven quantum engines , 2015, 1503.04865.

[33]  Gershon Kurizki,et al.  Work extraction via quantum nondemolition measurements of qubits in cavities: Non-Markovian effects , 2012, 1211.1772.

[34]  H. Carmichael Statistical Methods in Quantum Optics 2 , 2008 .

[35]  Zach DeVito,et al.  Opt , 2017 .

[36]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[37]  David Gelbwaser-Klimovsky,et al.  Non-equilibrium quantum heat machines , 2015, 1507.01660.

[38]  Mauro Paternostro,et al.  Nonequilibrium quantum Landauer principle. , 2014, Physical review letters.

[39]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[40]  R. Brouri,et al.  Non-gaussian statistics from individual pulses of squeezed light , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[41]  Tao Wang,et al.  Effects of reservoir squeezing on quantum systems and work extraction. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  K. Modi,et al.  Quantum thermodynamics of general quantum processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  H. A. M. Daniëls PASSIVITY AND EQUILIBRIUM FOR CLASSICAL HAMILTONIAN-SYSTEMS , 1981 .

[44]  Gershon Kurizki,et al.  Engineering a thermal squeezed reservoir by energy-level modulation , 2012, 1211.4378.

[45]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[46]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[47]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[48]  Sebastian Deffner,et al.  Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  G. Agarwal,et al.  Robust stationary mechanical squeezing in a kicked quadratic optomechanical system , 2013, 1309.5485.

[50]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[51]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[52]  Ronnie Kosloff,et al.  A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid , 1992 .

[53]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[54]  A. J. Short,et al.  Work extraction and thermodynamics for individual quantum systems , 2013, Nature Communications.

[55]  W. Pusz,et al.  Passive states for finite classical systems , 1980 .

[56]  Christopher Jarzynski,et al.  Validity of nonequilibrium work relations for the rapidly expanding quantum piston. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Marian Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[58]  G. Kurizki,et al.  Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  R. Kosloff,et al.  Characteristics of the limit cycle of a reciprocating quantum heat engine. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Ekert,et al.  Canonical transformation and decay into phase-sensitive reservoirs. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[61]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[62]  Masahito Ueda,et al.  Carnot's theorem for nonthermal stationary reservoirs. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  V. Dodonov REVIEW ARTICLE: `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years , 2002 .

[64]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[65]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[66]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[67]  Kavan Modi,et al.  Quantacell: powerful charging of quantum batteries , 2015, 1503.07005.

[68]  Deniz Türkpençe,et al.  Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. , 2015, Physical review. E.

[69]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[70]  Joseph H. Eberly,et al.  Quantum Optics in Phase Space , 2002 .

[71]  W. Schleich Quantum Optics in Phase Space: SCHLEICH:QUANTUM OPTICS O-BK , 2005 .

[72]  Herbert Walther,et al.  Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence , 2003, Science.

[73]  Knight,et al.  Properties of squeezed number states and squeezed thermal states. , 1989, Physical review. A, General physics.