A fast solver for integral equations with convolution-type Kernel

This paper studies the data redundancy of the coefficient matrix of the corresponding discrete system which forms a basis for fast algorithms of solving the integral equation whose kernel includes a convolution function factor. We develop lossless matrix compression strategies, which reduce the cost of integral evaluations and the storage to linear complexity, i.e., the same order of the approximation space dimensions. We establish that this algorithm preserves the convergence order of the approximate solution. We also propose a hardware-aware parallel algorithm for these strategies.

[1]  Silong Peng,et al.  A quasi-wavelet algorithm for second kind boundary integral equations , 1999, Adv. Comput. Math..

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Nirmal K. Bose,et al.  High‐resolution image reconstruction with multisensors , 1998, Int. J. Imaging Syst. Technol..

[4]  NG MICHAELK. CIRCULANT PRECONDITIONERS FOR CONVOLUTION-LIKE INTEGRAL EQUATIONS WITH HIGHER-ORDER QUADRATURE RULES , 1997 .

[5]  Zhongying Chen,et al.  The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-Kind Integral Equations , 1998 .

[6]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[7]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[8]  Mehmet Sezer,et al.  Taylor polynomial solutions of Volterra integral equations , 1994 .

[9]  Yuesheng Xu,et al.  Discrete Wavelet Petrov–Galerkin Methods , 2002, Adv. Comput. Math..

[10]  Mario Bertero,et al.  Super-resolution in confocal scanning microscopy , 1987 .

[11]  Charles A. Micchelli,et al.  Wavelet Galerkin methods for second-kind integral equations , 1997 .

[12]  R. Kress Linear Integral Equations , 1989 .

[13]  Charles K. Chui,et al.  2. Box Splines and Multivariate Truncated Powers , 1988 .

[14]  陈仲英,et al.  Error Control Strategies for Numerical Integrations in Fast Collocation Methods , 2005 .

[15]  Yuesheng Xu,et al.  The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes , 1997, Adv. Comput. Math..

[16]  Yuesheng Xu,et al.  Fast Collocation Methods for Second Kind Integral Equations , 2002, SIAM J. Numer. Anal..

[17]  Bin Wu,et al.  Fast Collocation Methods for High-Dimensional Weakly Singular Integral Equations , 2008 .

[18]  Khosrow Maleknejad,et al.  Numerical solution of integral equations system of the second kind by Block-Pulse functions , 2005, Appl. Math. Comput..

[19]  Nasser Aghazadeh,et al.  Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method , 2005, Appl. Math. Comput..

[20]  Davis K. Cope Recursive generation of the Galerkin–Chebyshev matrix for convolution kernels , 1998, Adv. Comput. Math..

[21]  Per Christian Hansen,et al.  Deconvolution and Regularization with Toeplitz Matrices , 2002, Numerical Algorithms.

[22]  Chen Zhong-ying,et al.  Error Control Strategies for Numerical Integrations in Fast Collocation Methods , 2005 .

[23]  陈仲英,et al.  MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS , 2005 .

[24]  Ian H. Sloan,et al.  Piecewise Continuous Collocation for Integral Equations , 1983 .

[25]  Hideaki Kaneko,et al.  Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind , 1994 .

[26]  Charles A. Micchelli,et al.  A Multilevel Method for Solving Operator Equations , 2001 .

[27]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[28]  L. Hacia Approximate Solutions of a Certain Class of Operator Equations , 1989 .

[29]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .

[30]  Reinhold Schneider,et al.  Multiwavelets for Second-Kind Integral Equations , 1997 .

[31]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[32]  Christoph Schwab Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.

[33]  Yao Lu,et al.  Integral equation models for image restoration: high accuracy methods and fast algorithms , 2010 .

[34]  Bin Wu,et al.  Fast numerical collocation solutions of integral equations , 2007 .

[35]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[36]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[38]  Yuesheng Xu,et al.  A construction of interpolating wavelets on invariant sets , 1999, Math. Comput..