Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling

Under increasing compression, an unbuckled shell is in a metastable state which becomes increasingly precarious as the buckling load is approached. So to induce premature buckling, a lateral disturbance will have to overcome a decreasing energy barrier which reaches zero at buckling. Two archetypal problems that exhibit a severe form of this behavior are the axially-compressed cylindrical shell and the externally pressurized spherical shell. Focusing on the cylinder, a nondestructive technique was recently proposed to estimate the “shock-sensitivity” of a laboratory specimen using a lateral probe to measure the nonlinear load-deflection characteristic. If a symmetry-breaking bifurcation is encountered on the path, computer simulations showed how this can be suppressed by a controlled secondary probe. Here, we extend our understanding by assessing in general terms how a single control can capture remote saddle solutions: in particular, how a symmetric probe could locate an asymmetric solution. Then, more s...

[1]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[2]  Hsue-shen Tsien,et al.  Lower Buckling Load in the Non-Linear Buckling Theory for Thin Shells , 1947 .

[3]  H. Tsien A Theory for the Buckling of Thin Shells , 1942 .

[4]  John W. Hutchinson,et al.  Imperfection Sensitivity of Externally Pressurized Spherical Shells , 1967 .

[5]  G. H. M. Heijden The static deformation of a twisted elastic rod constrained to lie on a cylinder , 2001 .

[6]  L. Berke,et al.  Experimental studies of the postbuckling behavior of complete spherical shells , 1968 .

[7]  A. Van der Neut,et al.  De elastische stabiliteit van den dunwandigen bol , 1932 .

[8]  Wei Wang,et al.  Spatially complex localization in twisted elastic rods constrained to an elliptic cylinder , 2013 .

[9]  Hiroyuki Fujita,et al.  Ridge Localizations and Networks in Thin Films Compressed by the Incremental Release of a Large Equi‐biaxial Pre‐stretch in the Substrate , 2014, Advanced materials.

[10]  J Michael T Thompson,et al.  Advice to a young researcher: with reminiscences of a life in science , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Ewa Weinmüller,et al.  An investigation of the complete post-buckling behavior of axisymmetric spherical shells , 1985 .

[12]  Mark A. Peletier,et al.  Cylinder Buckling: The Mountain Pass as an Organizing Center , 2006, SIAM J. Appl. Math..

[13]  David Bushnell Buckling of shells - Pitfall for designers , 1980 .

[14]  Giles W Hunt Reflections and symmetries in space and time , 2011 .

[15]  Tatsuzo Koga,et al.  The axisymmetric buckling of initially imperfect complete spherical shells , 1969 .

[16]  J. M. T. Thompson,et al.  The Elastic Instability of a Complete Spherical Shell , 1962 .

[17]  J. M. T. Thompson Making of Thin Metal Shells for Model Stress Analysis , 1960 .

[18]  Robert Zoelly,et al.  Ueber ein Knickungsproblem an der Kugelschale , 1915 .

[19]  J. M. T. Thompson,et al.  Experiments in catastrophe , 1975, Nature.

[20]  Theodore von Karman,et al.  The buckling of thin cylindrical shells under axial compression , 2003 .

[21]  G. W. Hunt,et al.  Cellular Buckling in Long Structures , 2000 .

[22]  Nicholas J. Hoff,et al.  Experimental studies of the buckling of complete spherical shells , 1967 .

[23]  J. Michael T. Thompson Advances in Shell Buckling: Theory and Experiments , 2015, Int. J. Bifurc. Chaos.

[24]  J. Michael T. Thompson,et al.  Quantified "Shock-Sensitivity" Above the Maxwell Load , 2014, Int. J. Bifurc. Chaos.

[25]  D. Barton,et al.  Systematic experimental exploration of bifurcations with noninvasive control. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Luis A. Godoy,et al.  A penalty approach to obtain lower bound buckling loads for imperfection-sensitive shells , 2015 .

[27]  Takesada Tokugawa Experiments on the Elastic Stability of Thin Spherical Shell under Uniform External Pressure and Some Idea of Rough Approximation to the Calculation of its Collapsing Pressure , 1937 .

[28]  Isaac Elishakoff Resolution of the Twentieth Century Conundrum in Elastic Stability , 2014 .

[29]  Giles W Hunt,et al.  Towards a unified bifurcation theory , 1975 .

[30]  G. W. Hunt,et al.  Structural localization phenomena and the dynamical phase-space analogy , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Mark A. Peletier,et al.  Cylindrical shell buckling: a characterization of localization and periodicity , 2003 .

[32]  T. Kármán,et al.  The Buckling of Spherical Shells by External Pressure , 1939 .

[33]  Alan R. Champneys,et al.  From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Edward L. Reiss,et al.  Axisymmetric buckling of hollow spheres and hemispheres , 1970 .

[35]  A. B. Sabir,et al.  Large Deflection and Buckling Behaviour of a Spherical Shell with Inward Point Load and Uniform External Pressure , 1964 .

[36]  J.M.T. Thompson,et al.  Helical and Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric Case , 2000 .

[37]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[38]  E. Schwerin,et al.  Zur Stabilität der dünnwandigen Hohlkugel unter gleichmäßigem Außendruck , 1922 .

[39]  A. G. Gabril'iants,et al.  Axially-symmetric forms of equilibrium of an elastic spherical shell under uniformly distributed pressure , 1961 .

[40]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .