A molecular calculation of electronic properties of layered crystals. II. Periodic small cluster calculation for graphite and boron nitride

Small (18-32 atoms) periodic clusters of two-dimensional hexagonal graphite and boron nitride are shown to represent some high-symmetry points in the Brillouin zone of the infinite crystal. Semi-empirical all-valence electron calculations are performed on these clusters and the binding energy, work function, bandwidth, band-to-band transition energy, band gap, charges and equilibrium distances are computed and compared with values obtained by tight binding and truncated crystal calculations. Favourable agreement with experimental data is obtained with selfconsistent calculations on these clusters.

[1]  Alex Zunger,et al.  A molecular calculation of electronic properties of layered crystals. I. Truncated crystal approach for hexagonal boron nitride , 1974 .

[2]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[3]  Van Vechten,et al.  Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant , 1969 .

[4]  C. Coulson,et al.  Studies in Graphite and Related Compounds III: Electronic Band Structure in Boron Nitride , 1952 .

[5]  Manuel A. Kanter,et al.  Diffusion of Carbon Atoms in Natural Graphite Crystals , 1957 .

[6]  F. Bassani,et al.  Band structure and optical properties of graphite and of the layer compounds GaS and GaSe , 1967 .

[7]  F. C. Chalklin Intensity measurements in the very soft X-ray regions , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  E. Tosatti,et al.  Anisotropy of the Optical Constants and the Band Structure of Graphite , 1970 .

[9]  A. Armstrong,et al.  Semiempirical Molecular Orbital Calculations. VII. σ-π Separability in the Mulliken-Wolfsberg-Helmholtz Approach , 1968 .

[10]  John Meurig Thomas,et al.  Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy , 1971 .

[11]  J. Zupan ENERGY BANDS IN BORON NITRIDE AND GRAPHITE. , 1972 .

[12]  Richard P. Messmer,et al.  Semi-empirical LCAO band structures , 1971 .

[13]  A. Zunger Iterative extended Huckel calculation on hexagonal boron nitride , 1972 .

[14]  G. S. Painter,et al.  Electronic band structure and optical properties of graphite from a variational approach , 1970 .

[15]  A. Silver,et al.  NMR Study of Bonding in Some Solid Boron Compounds , 1960 .

[16]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[17]  J. Tanaka,et al.  The Relation between Energy Levels of Substituent Groups and Electron Migration Effects in Some Monosubstituted Benzenes , 1954 .

[18]  S. McGlynn,et al.  SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS: DIMERS OF BENZENE. , 1968 .

[19]  R. S. Pease An X‐ray study of boron nitride , 1952 .

[20]  V. S. Fomenko,et al.  Handbook of Thermionic Properties , 1966 .

[21]  S. Y. Tyree,et al.  Influence of madelung (interatomic Coulomb) energy on Wolfsberg–Helmholz calculations , 1967 .

[22]  S. Nagakura Intramolecular Charge Transfer Spectra Observed with Some Compounds Containing the Nitro or the Carbonyl Group , 1955 .

[23]  H. O. Pritchard,et al.  The measure of electronegativity , 1953 .

[24]  M. Rand,et al.  Preparation and Properties of Thin Film Boron Nitride , 1968 .

[25]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[26]  S. Larach,et al.  Multiband Luminescence in Boron Nitride , 1956 .

[27]  G. Parravicini,et al.  Energy bands and optical properties of hexagonal boron nitride and graphite , 1969 .

[28]  C. Coulson,et al.  Studies in Graphite and Related Compounds I: Electronic Band Structure in Graphite , 1952 .

[29]  C. Nordling,et al.  Valence Bands and Core Levels of the Isoelectronic Series LiF, BeO, BN, and Graphite Studied by ESCA , 1970 .

[30]  Walter Baronian The optical properties of thin boron nitride films , 1972 .