Synaptic clustering by dendritic signalling mechanisms

Dendritic signal integration is one of the fundamental building blocks of information processing in the brain. Dendrites are endowed with mechanisms of nonlinear summation of synaptic inputs leading to regenerative dendritic events including local sodium, NMDA and calcium spikes. The generation of these events requires distinct spatio-temporal activation patterns of synaptic inputs. We hypothesise that the recent findings on dendritic spikes and local synaptic plasticity rules suggest clustering of common inputs along a subregion of a dendritic branch. These clusters may enable dendrites to separately threshold groups of functionally similar inputs, thus allowing single neurons to act as a superposition of many separate integrate and fire units. Ultimately, these properties expand our understanding about the computational power of neuronal networks.

[1]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[2]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[3]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[4]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[5]  S. Sajikumar,et al.  Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD , 2004, Neurobiology of Learning and Memory.

[6]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[7]  Masahiko Watanabe,et al.  SK2 channel plasticity contributes to LTP at Schaffer collateral–CA1 synapses , 2008, Nature Neuroscience.

[8]  Johannes J. Letzkus,et al.  Requirement of dendritic calcium spikes for induction of spike‐timing‐dependent synaptic plasticity , 2006, The Journal of physiology.

[9]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[10]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[11]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[12]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[13]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[14]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[15]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[16]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[17]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[18]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[19]  Bernardo L Sabatini,et al.  Ca2+ signaling in dendritic spines , 2007, Current Opinion in Neurobiology.

[20]  Rafael Yuste,et al.  Two-photon photostimulation and imaging of neural circuits , 2007, Nature Methods.

[21]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[22]  J. Magee,et al.  Changes in AMPA receptor currents following LTP induction on rat CA1 pyramidal neurones , 2004, The Journal of physiology.

[23]  B. Kampa,et al.  Calcium Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons during Action Potential Bursts , 2006, The Journal of Neuroscience.

[24]  B. Sakmann,et al.  Single Spine Ca2+ Signals Evoked by Coincident EPSPs and Backpropagating Action Potentials in Spiny Stellate Cells of Layer 4 in the Juvenile Rat Somatosensory Barrel Cortex , 2004, The Journal of Neuroscience.

[25]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[26]  Dejan Zecevic,et al.  Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre‐ and post‐synaptic activity: a combined voltage‐ and calcium‐imaging study , 2007, The Journal of physiology.

[27]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[28]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[29]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[30]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[31]  J. Magee Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. , 1999, Nature neuroscience.

[32]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[33]  B. Sakmann,et al.  Molecular dissection of hippocampal theta-burst pairing potentiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[35]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Cpj de Kock,et al.  Reconstruction of an average cortical column in silico , 2007, Brain Research Reviews.

[37]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[38]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[39]  C. Lüscher,et al.  Rapid Synthesis and Synaptic Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area , 2007, Science.

[40]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[41]  Mark Mayford,et al.  Spine-Type-Specific Recruitment of Newly Synthesized AMPA Receptors with Learning , 2008, Science.

[42]  W. Denk,et al.  Imaging in vivo: watching the brain in action , 2008, Nature Reviews Neuroscience.

[43]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[44]  Leslie M Loew,et al.  Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons , 2008, The European journal of neuroscience.

[45]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[46]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[47]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[48]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[49]  Roberto Araya,et al.  Dendritic spines linearize the summation of excitatory potentials , 2006, Proceedings of the National Academy of Sciences.

[50]  Idan Segev,et al.  The morphoelectrotonic transform: a graphical approach to dendritic function , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  S. Antic,et al.  Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons , 2005, The Journal of Membrane Biology.

[52]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[53]  Rafael Yuste,et al.  Dendritic spines and linear networks , 2004, Journal of Physiology-Paris.

[54]  A. Rodríguez-Contreras,et al.  Learning Drives Differential Clustering of Axodendritic Contacts in the Barn Owl Auditory System , 2008, The Journal of Neuroscience.

[55]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[56]  Daniel Johnston,et al.  Plasticity of dendritic function , 2005, Current Opinion in Neurobiology.

[57]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[58]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[59]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[60]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[61]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[62]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[63]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[64]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[65]  Masanori Murayama,et al.  Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. , 2007, Journal of neurophysiology.

[66]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[67]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[68]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[69]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[70]  Masanobu Kano,et al.  Ca2+-assisted receptor-driven endocannabinoid release: mechanisms that associate presynaptic and postsynaptic activities , 2007, Current Opinion in Neurobiology.

[71]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[72]  Haruo Kasai,et al.  Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines , 2008, Science.

[73]  N. Spruston,et al.  Dendritic spikes induce single-burst long-term potentiation , 2007, Proceedings of the National Academy of Sciences.

[74]  E. Vizi,et al.  Noradrenergic enhancement of Ca2+ responses of basal dendrites in layer 5 pyramidal neurons of the prefrontal cortex , 2007, Neurochemistry International.

[75]  H. Urakubo,et al.  Requirement of an Allosteric Kinetics of NMDA Receptors for Spike Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[76]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[77]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[78]  Vanessa A. Bender,et al.  Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex , 2006, The Journal of Neuroscience.

[79]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[80]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[81]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[82]  Johannes J. Letzkus,et al.  Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location , 2006, The Journal of Neuroscience.

[83]  S. Tonegawa,et al.  A clustered plasticity model of long-term memory engrams , 2006, Nature Reviews Neuroscience.

[84]  Nicolangelo Iannella,et al.  Synaptic efficacy cluster formation across the dendrite via STDP , 2006, Neuroscience Letters.

[85]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.