Channel analysis for single photon underwater free space quantum key distribution.

We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

[1]  G. Guo,et al.  Background noise of satellite-to-ground quantum key distribution , 2005 .

[2]  Charles W. Clark,et al.  Free-space quantum cryptography in the H-alpha Fraunhofer window , 2006, SPIE Optics + Photonics.

[3]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[4]  C. Pontbriand,et al.  An integrated, underwater optical /acoustic communications system , 2010, OCEANS'10 IEEE SYDNEY.

[5]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[6]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[7]  P. Villoresi,et al.  Feasibility of satellite quantum key distribution , 2009, 0903.2160.

[8]  Sermsak Jaruwatanadilok,et al.  Underwater Wireless Optical Communication Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory , 2008, IEEE Journal on Selected Areas in Communications.

[9]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[10]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[11]  Dong Liu,et al.  Field and long-term demonstration of a wide area quantum key distribution network , 2014, Optics express.

[12]  H. Bader,et al.  The hyperbolic distribution of particle sizes , 1970 .

[13]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[14]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[15]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[16]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[17]  Linda Mullen,et al.  Optical propagation in the underwater environment , 2009, Defense + Commercial Sensing.

[18]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.

[19]  Maurice A. Tivey A Low Power, Low Cost, Underwater Optical Communication System , 2004 .

[20]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[21]  J. J. Puschell,et al.  The Autonomous Data Optical Relay Experiment: first two way laser communication between an aircraft and submarine , 1992, [Proceedings] NTC-92: National Telesystems Conference.

[22]  Jessica Ramella-Roman,et al.  Three Monte Carlo programs of polarized light transport into scattering media: part I. , 2005, Optics express.