Estimation of reliability in multicomponent stress–strength based on two parameter exponentiated Weibull Distribution

ABSTRACT In this research article, we estimate the multicomponent stress–strength reliability of a system when strength and stress variates are drawn from an exponentiated Weibull distribution with different shape parameters α and β, and common shape and scale parameters γ and λ, respectively. We estimate the parameters by using maximum likelihood estimation (MLE) and hence the estimate of reliability obtained applying the MLE method of estimation when samples are drawn from stress and strength distributions. The small sample comparison of the reliability estimates is made through Monte Carlo simulation.

[1]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[2]  Seymour Geisser,et al.  Estimation of the Probability that Y , 1971 .

[3]  Adnan M. Awad,et al.  Estimation of p(y, 1986 .

[4]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[5]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[6]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[7]  Md. Borhan Uddin,et al.  Estimation of reliability in a multicomponent stress-strength model , 1993 .

[8]  Md. Borhan Uddin,et al.  Estimation of reliability in multi-component stress-strength model following a Burr distribution , 1991 .

[9]  Debasis Kundu,et al.  Estimation of P[Y < X] for generalized exponential distribution , 2005 .

[10]  Debasis Kundu,et al.  Estimation of P[Y, 2006, IEEE Transactions on Reliability.

[11]  Debasis Kundu,et al.  Comparison of Different Estimators of P [Y < X] for a Scaled Burr Type X Distribution , 2005 .

[12]  Debasis Kundu,et al.  Estimation of R = P ( Y < X ) for three-parameter Weibull distribution , 2009 .

[13]  M. Z. Raqab Estimation of P ( Y < X ) for the 3-Parameter Generalized Exponential Distribution , 2022 .

[14]  F. Downton The Estimation of Pr (Y < X) in the Normal Case , 1973 .

[15]  G. Srinivasarao,et al.  ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS- STRENGTH MODEL: LOG-LOGISTIC DISTRIBUTION , 2010 .

[16]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[17]  John I. McCool,et al.  Inference on p{y , 1991 .

[18]  R. Shalaby,et al.  Estimation of P(Y > X) for Weibull Distribution In the Presence of k Outliers , 2012 .

[19]  G. S. Rao ESTIMATION OF RELIABILITY IN MULTICOMPONENT STRESS-STRENGTH BASED ON GENERALIZED INVERTED EXPONENTIAL DISTRIBUTION - , 2012 .

[20]  Manisha Pal,et al.  Exponentiated Weibull distribution , 2006 .

[21]  Richard A. Johnson,et al.  Estimation of Reliability in a Multicomponent Stress-Strength Model , 1974 .

[22]  D. Kundu,et al.  Estimation of R=P(Y, 2009 .

[23]  D. Kundu,et al.  Estimation of P(Y < X) for the Three-Parameter Generalized Exponential Distribution , 2008 .