Out-of-equilibrium dynamics of classical and quantum complex systems

Abstract Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied, its subsequent relaxation to equilibrium may be either impossible or take very long times. From the point of view of fundamental physics, no generic principle such as the ones of thermodynamics allows us to fully understand its behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete, but still general features of a class of out-of-equilibrium problems – yet to be identified – and search for a unified description of these. In this report, I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.

[1]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems: Index , 1998 .

[2]  Jorge Kurchan Supersymmetry, replica and dynamic treatments of disordered systems: a parallel presentation , 2002 .

[3]  Gert-Ludwig Ingold,et al.  Quantum Brownian motion: The functional integral approach , 1988 .

[4]  Cecile Monthus,et al.  Strong disorder RG approach of random systems , 2005, cond-mat/0502448.

[5]  R Fazio,et al.  Extracting quantum work statistics and fluctuation theorems by single-qubit interferometry. , 2013, Physical review letters.

[6]  G. Gallavotti Heat and fluctuations from order to chaos , 2007, 0711.2755.

[7]  A. Georges,et al.  Dissipative quantum systems: from two to many atoms , 2012, 1212.4254.

[8]  F. Ritort,et al.  Nonequilibrium fluctuations in small systems: From physics to biology , 2007, 0705.0455.

[9]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[10]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[11]  R. Citro,et al.  One dimensional bosons: From condensed matter systems to ultracold gases , 2011, 1101.5337.

[12]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[13]  Leticia F. Cugliandolo,et al.  Dynamics of glassy systems , 2002 .

[14]  G. Biroli,et al.  Theoretical perspective on the glass transition and amorphous materials , 2010, 1011.2578.

[15]  Lode Pollet,et al.  Recent developments in quantum Monte Carlo simulations with applications for cold gases , 2012, Reports on progress in physics. Physical Society.

[16]  Guilhem Semerjian,et al.  The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective , 2012, ArXiv.

[17]  H. Yoshino,et al.  Growing length scales in aging systems , 2010, 1010.0149.

[18]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[19]  Bikas K. Chakrabarti,et al.  Transverse Field Spin Models: From Statistical Physics to Quantum Information , 2010, 1012.0653.

[20]  M. Talagrand Spin glasses : a challenge for mathematicians : cavity and mean field models , 2003 .

[21]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[22]  G. Biroli,et al.  Driven quantum coarsening. , 2008, Physical review letters.

[23]  Crackling Noise and Avalanches: Scaling, Critical Phenomena, and the Renormalization Group , 2006, cond-mat/0612418.

[24]  S. Franz,et al.  Analytical approaches to time and length scales in models of glasses , 2010, 1009.5248.

[25]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[26]  M. Talagrand The parisi formula , 2006 .

[27]  P. Gaspard Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics , 2006, cond-mat/0603382.

[28]  DISSIPATIVE QUANTUM DISORDERED MODELS , 2004, cond-mat/0412043.

[29]  Uwe Claus Täuber,et al.  Field Theoretic Methods , 2009, Encyclopedia of Complexity and Systems Science.

[30]  J P Garrahan,et al.  Dynamical first-order phase transition in kinetically constrained models of glasses. , 2007, Physical review letters.

[31]  R. Stinchcombe Stochastic non-equilibrium systems , 2001 .

[32]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[33]  F. Guerra Spin Glasses , 2005, cond-mat/0507581.

[34]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[35]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[36]  R. A. Blythe,et al.  Nonequilibrium steady states of matrix-product form: a solver's guide , 2007, 0706.1678.

[37]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[38]  A. Burin Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics , 2006 .

[39]  Dynamics of Disordered Elastic Systems , 2006 .

[40]  Growing correlations and aging of an elastic line in a random potential , 2009, 0903.4878.

[41]  D. Bernard,et al.  Non-Equilibrium Steady States in Conformal Field Theory , 2013, 1302.3125.

[42]  E. Donth The glass transition : relaxation dynamics in liquids and disordered materials , 2001 .

[43]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[44]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences , 2000 .

[45]  Fisher,et al.  Ordered phase of short-range Ising spin-glasses. , 1986, Physical review letters.

[47]  Bertrand Delamotte,et al.  An Introduction to the Nonperturbative Renormalization Group , 2007, cond-mat/0702365.

[48]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[49]  U. Weiss Quantum Dissipative Systems , 1993 .

[50]  Pierre Le Doussal,et al.  Avalanche dynamics of elastic interfaces. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[52]  J. P. Garrahan,et al.  Kinetically Constrained Models , 2010, 1009.6113.

[53]  G. Lozano,et al.  Local and effective temperatures of quantum driven systems , 2009, 0907.1515.

[54]  G. Schütz 1 – Exactly Solvable Models for Many-Body Systems Far from Equilibrium , 2001 .

[55]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[56]  Jean-Philippe Bouchaud,et al.  Slow dynamics and aging in spin glasses , 1996, cond-mat/9607224.

[57]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  Beate Schmittmann,et al.  Statistical mechanics of driven diffusive systems , 1995 .

[60]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[61]  A. Kamenev,et al.  Keldysh technique and non-linear σ-model: basic principles and applications , 2009, 0901.3586.

[62]  C. Kasztelan Strongly Interacting Quantum Systems out of Equilibrium , 2010 .

[63]  Y. Levin,et al.  Nonequilibrium statistical mechanics of systems with long-range interactions , 2013, 1310.1078.

[64]  B. Eynard Service de Physique Theorique de Saclay , 1992 .

[65]  Valerii M. Vinokur,et al.  Vortices in high-temperature superconductors , 1994 .

[66]  L. Cugliandolo The effective temperature , 2011, 1104.4901.

[67]  Yicheng Zhang,et al.  Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics , 1995 .

[68]  Federico Corberi,et al.  Fluctuation dissipation relations far from equilibrium , 2007, 0707.0751.

[69]  John Cardy SLE for theoretical physicists , 2005 .

[70]  Rosario Fazio,et al.  Quantum quenches, thermalization, and many-body localization , 2010, 1006.1634.

[71]  Thomas Vojta,et al.  Phases and phase transitions in disordered quantum systems , 2013, 1301.7746.

[72]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[73]  P. Doussal Exact results and open questions in first principle functional RG , 2008, 0809.1192.

[74]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[75]  Phillip L Geissler,et al.  Active biological materials. , 2009, Annual review of physical chemistry.

[76]  Vortex-glass phases in type-II superconductors , 2000, cond-mat/0003052.

[77]  M. Fabrizio,et al.  Quantum Quenches in the Hubbard Model: Time Dependent Mean Field Theory and The Role of Quantum Fluctuations , 2011, 1102.1658.

[78]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[79]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[80]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[81]  H. Janssen,et al.  New universal short-time scaling behaviour of critical relaxation processes , 1989 .