Numerical simulation of slow light in the semiconductor optical amplifier

Optoelectronic technology played a pivotal role in the unprecedented information revolution in the past two decades. One of the remaining grand challenges is the ability to store an optical signal in optical format. So slowing down the velocity of light have recently attracted substantial interest. In various mechanisms of slow light generation, semiconductor optical amplifier (SOA) attracts much attention because it offers the advantage of compactness, room temperature operation, electric-optical controllable and easy integration with existing optical communication systems. In this paper, slow light generation in SOA using four wave mixing (FWM) effect is analyzed. The dynamic changes of the signal light time delay with the outside controllable parameters, such as the injection current into SOA, the pump light power, the detuning frequency between pump light and signal light, are numerically solved on the basis of the theory of refractive modulation-index and the sub-sections model of SOA. This method has the advantage of accurate simulated results and providing the explicit relationships between the controllable parameters with the signal light time delay for the practical experiment.