Higher-Order Improvements of the Parametric Bootstrap for Markov Processes

This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements (over confidence intervals based on first order asymptotics) that are comparable to those obtained by the parametric and nonparametric bootstrap for iid data and are better than those obtained by the block bootstrap for time series. Additional results are given for Wald-based confidence regions. The paper also shows that k-step parametric bootstrap confidence intervals achieve the same higher-order improvements as the standard parametric bootstrap for Markov processes. The k-step bootstrap confidence intervals are computationally attractive. They circumvent the need to compute a nonlinear optimization for each simulated bootstrap sample. The latter is necessary to implement the standard parametric bootstrap when the maximum likelihood estimator solves a nonlinear optimization problem.

[1]  P. Doukhan Mixing: Properties and Examples , 1994 .

[2]  H. R. K. unsch,et al.  Second Order Correctness of the Blockwise Bootstrap for Stationary Observations , 1996 .

[3]  Jānis Zvingelis,et al.  On Bootstrap Coverage Probability with Dependent Data , 2000 .

[4]  Joel L. Horowitz,et al.  Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators , 1996 .

[5]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[6]  A. Bose Edgeworth correction by bootstrap in autoregressions , 1988 .

[7]  V. K. Malinovskii,et al.  Limit Theorems for Harris Markov Chains, I , 1987 .

[8]  L. Kilian,et al.  Bootstrapping autoregressive processes with possible unit roots , 2000 .

[9]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[10]  Joon Y. Park AN INVARIANCE PRINCIPLE FOR SIEVE BOOTSTRAP IN TIME SERIES , 2002, Econometric Theory.

[11]  Refinements in asymptotic expansions for sums of weakly dependent random vectors , 1993 .

[12]  Peter Bühlmann,et al.  Sieve bootstrap for smoothing in nonstationary time series , 1998 .

[13]  Yoosoon Chang,et al.  A Sieve Bootstrap For The Test Of A Unit Root , 2003 .

[14]  S. Lahiri Theoretical comparisons of block bootstrap methods , 1999 .

[15]  Joel L. Horowitz,et al.  Bootstrap Methods for Markov Processes , 2003 .

[16]  Soumendra N. Lahiri,et al.  On Edgeworth Expansion and Moving Block Bootstrap for StudentizedM-Estimators in Multiple Linear Regression Models , 1996 .

[17]  P. Bühlmann Sieve bootstrap for time series , 1997 .

[18]  F. Götze,et al.  Asymptotic Distribution of Statistics in Time Series , 1994 .

[19]  Eric R. Ziegel,et al.  New Perspectives in Theoretical and Applied Statistics , 1988 .

[20]  James G. MacKinnon,et al.  THE SIZE DISTORTION OF BOOTSTRAP TESTS , 1999, Econometric Theory.

[21]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[22]  J. MacKinnon,et al.  Bootstrap Testing in Nonlinear Models , 1999 .

[23]  Donald W. K. Andrews,et al.  Approximately Median-Unbiased Estimation of Autoregressive Models , 1994 .

[24]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[25]  Friedrich Götze,et al.  Asymptotic expansions for sums of weakly dependent random vectors , 1983 .

[26]  H. White,et al.  Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models , 2000 .

[27]  Ryozo Yokoyama Moment bounds for stationary mixing sequences , 1980 .

[28]  P. Robinson,et al.  The stochastic difference between econometric statistics , 1988 .

[29]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  P. Janssen,et al.  Rate of Convergence of One- and Two-Step $M$-Estimators with Applications to Maximum Likelihood and Pitman Estimators , 1985 .

[31]  L. L. Cam,et al.  On the Asymptotic Theory of Estimation and Testing Hypotheses , 1956 .

[32]  Jayanta K. Ghosh,et al.  Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square variables , 1979 .

[33]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .