Evolutionary Ensemble for Stock Prediction

We propose a genetic ensemble of recurrent neural networks for stock prediction model. The genetic algorithm tunes neural networks in a two-dimensional and parallel framework. The ensemble makes the decision of buying or selling more conservative. It showed notable improvement on the average over not only the buy-and-hold strategy but also other traditional ensemble approaches.

[1]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[2]  K. R. Wolfe Turning point identification and Bayesian forecasting of a volatile time series , 1988 .

[3]  Yi-Fan Wang,et al.  Predicting stock price using fuzzy grey prediction system , 2002, Expert Syst. Appl..

[4]  Byung Ro Moon,et al.  Daily Stock Prediction Using Neuro-genetic Hybrids , 2003, GECCO.

[5]  M. Kaboudan Genetic Programming Prediction of Stock Prices , 2000 .

[6]  Byung Ro Moon,et al.  Neuron Reordering For Better Neuro-genetic Hybrids , 2002, GECCO.

[7]  Dong Ha Lee,et al.  Data mining approach to policy analysis in a health insurance domain , 2001, Int. J. Medical Informatics.

[8]  Harris Drucker,et al.  Boosting and Other Ensemble Methods , 1994, Neural Computation.

[9]  Xin Yao,et al.  Making use of population information in evolutionary artificial neural networks , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Nils J. Nilsson,et al.  Learning Machines: Foundations of Trainable Pattern-Classifying Systems , 1965 .

[11]  Michael J. Shaw,et al.  Using Inductive Learning to Predict Bankruptcy , 2002, J. Organ. Comput. Electron. Commer..

[12]  Andrew B. Kahng,et al.  Toward More Powerful Recombinations , 1995, ICGA.

[13]  Oscar Castillo,et al.  Simulation and forecasting complex financial time series using neural networks and fuzzy logic , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[14]  William Blau Momentum, Direction, and Divergence , 1995 .

[15]  Ingoo Han,et al.  Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index , 2000 .

[16]  Perry J. Kaufman,et al.  Trading Systems and Methods , 1997 .

[17]  Andrew Stranieri,et al.  The use of an association rules matrix for economic modelling , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[18]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[19]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[20]  Chin-Teng Lin,et al.  Controlling chaos by GA-based reinforcement learning neural network , 1999, IEEE Trans. Neural Networks.

[21]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[22]  Tariq Samad,et al.  Towards the Genetic Synthesisof Neural Networks , 1989, ICGA.

[23]  Paul G. Harrald,et al.  Evolving artificial neural networks to combine financial forecasts , 1997, IEEE Trans. Evol. Comput..

[24]  Peter Ross,et al.  Explorations in LCS Models of Stock Trading , 2001, IWLCS.

[25]  Nikolaos G. Bourbakis,et al.  Financial prediction and trading strategies using neurofuzzy approaches , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Peter Tiño,et al.  Financial volatility trading using recurrent neural networks , 2001, IEEE Trans. Neural Networks.

[28]  J. Andrew Ware,et al.  Residential property price time series forecasting with neural networks , 2002, Knowl. Based Syst..