The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays

In this paper, we used the finite-difference time domain method to determine whether metallic caps provide plasmonic enhancement of absorption in vertically aligned silicon nanowire arrays. Metallic caps result naturally from the vapor-liquid-solid growth process, which uses metal catalyst particles to initiate growth. We found that gold, copper, and silver catalysts all decrease the integrated optical absorption across the solar spectrum.In this paper, we used the finite-difference time domain method to determine whether metallic caps provide plasmonic enhancement of absorption in vertically aligned silicon nanowire arrays. Metallic caps result naturally from the vapor-liquid-solid growth process, which uses metal catalyst particles to initiate growth. We found that gold, copper, and silver catalysts all decrease the integrated optical absorption across the solar spectrum.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[3]  J. Gilman,et al.  Nanotechnology , 2001 .

[4]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[5]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[6]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[7]  R. Osgood,et al.  Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes. , 2007, Optics letters.

[8]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[9]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[10]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[11]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[12]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[13]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[14]  V. Nebol'sin,et al.  Role of Surface Energy in the Vapor–Liquid–Solid Growth of Silicon , 2003 .

[15]  Albert Polman,et al.  Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells , 2009 .

[16]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[17]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[18]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[19]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[20]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[21]  F. Falk,et al.  Silicon nanowire-based solar cells , 2008, Nanotechnology.

[22]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[23]  J. Michler,et al.  The SERS and TERS effects obtained by gold droplets on top of Si nanowires. , 2007, Nano letters.