Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

[1]  M. Schlissel,et al.  Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis , 2005, Nature Immunology.

[2]  M. Lieber,et al.  Both V(D)J Coding Ends but Neither Signal End Can Recombine at the bcl-2 Major Breakpoint Region, and the Rejoining Is Ligase IV Dependent , 2005, Molecular and Cellular Biology.

[3]  R. Siebert,et al.  Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL , 2005, Leukemia.

[4]  M. McVey,et al.  End-Joining Repair of Double-Strand Breaks in Drosophila melanogaster Is Largely DNA Ligase IV Independent , 2004, Genetics.

[5]  I. Bahar,et al.  High‐efficiency bypass of DNA damage by human DNA polymerase Q , 2004, The EMBO journal.

[6]  B. Nadel,et al.  Unraveling the Consecutive Recombination Events in the Human IGK Locus1 , 2004, The Journal of Immunology.

[7]  R. Fisher,et al.  The epidemiology of non-Hodgkin's lymphoma , 2004, Oncogene.

[8]  M. Oettinger How to keep V(D)J recombination under control , 2004, Immunological reviews.

[9]  M. Krangel,et al.  Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T‐cell receptor α/δ locus , 2004 .

[10]  G. S. Lee,et al.  RAG Proteins Shepherd Double-Strand Breaks to a Specific Pathway, Suppressing Error-Prone Repair, but RAG Nicking Initiates Homologous Recombination , 2004, Cell.

[11]  M. Lieber,et al.  A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex , 2004, Nature.

[12]  M. Schlissel,et al.  Regulating antigen-receptor gene assembly , 2003, Nature Reviews Immunology.

[13]  P. Lebailly,et al.  Correspondence re: Welzel et al, Cancer Res, 61: 1629-1636. , 2003, Cancer research.

[14]  B. Nadel,et al.  Distinct t(7;9)(q34;q32) breakpoints in healthy individuals and individuals with T-ALL , 2003, Nature Genetics.

[15]  T. Kepler,et al.  Prospective Estimation of Recombination Signal Efficiency and Identification of Functional Cryptic Signals in the Genome by Statistical Modeling , 2003, The Journal of experimental medicine.

[16]  M. Adams,et al.  Drosophila BLM in Double-Strand Break Repair by Synthesis-Dependent Strand Annealing , 2003, Science.

[17]  Thomas B Kepler,et al.  Identification and utilization of arbitrary correlations in models of recombination signal sequences , 2002, Genome Biology.

[18]  D. Hockenbery A mitochondrial Achilles' heel in cancer? , 2002, Cancer cell.

[19]  D. Schatz V(D)J recombination , 2002, Immunological reviews.

[20]  B. Nadel,et al.  V(D)J-mediated Translocations in Lymphoid Neoplasms , 2002, The Journal of experimental medicine.

[21]  N. Ellis,et al.  Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. , 2001, Genes & development.

[22]  Riccardo Dalla-Favera,et al.  Mechanisms of chromosomal translocations in B cell lymphomas , 2001, Oncogene.

[23]  M. Lieber,et al.  Analysis of the V(D)J Recombination Efficiency at Lymphoid Chromosomal Translocation Breakpoints* , 2001, The Journal of Biological Chemistry.

[24]  B. Nadel,et al.  Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. , 2001, Cancer research.

[25]  B. Nadel,et al.  Novel Insights into the Mechanism of t(14;18)(q32;q21) Translocation in Follicular Lymphoma , 2001, Leukemia & lymphoma.

[26]  Christine Richardson,et al.  Coupled Homologous and Nonhomologous Repair of a Double-Strand Break Preserves Genomic Integrity in Mammalian Cells , 2000, Molecular and Cellular Biology.

[27]  R. Kingston,et al.  Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. , 2000, Molecular cell.

[28]  S. Lewis,et al.  Postcleavage Sequence Specificity in V(D)J Recombination , 2000, Molecular and Cellular Biology.

[29]  B. Nadel,et al.  Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. , 2000, Blood.

[30]  J. Boyes,et al.  Stimulation of V(D)J recombination by histone acetylation , 2000, Current Biology.

[31]  P. D. de Jong,et al.  The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Schatz,et al.  Intermolecular V(D)J Recombination* , 2000, The Journal of Biological Chemistry.

[33]  D. Roth,et al.  Intermolecular V(D)J recombination is prohibited specifically at the joining step. , 1999, Molecular cell.

[34]  B. Nadel,et al.  Sequence of the Spacer in the Recombination Signal Sequence Affects V(D)J Rearrangement Frequency and Correlates with Nonrandom Vκ Usage In Vivo , 1998, The Journal of experimental medicine.

[35]  J. Rowley,et al.  Molecular analysis of the t(8;14)(q24;q11) chromosomal breakpoint junctions in the T‐cell leukemia line MOLT‐16 , 1997 .

[36]  S. Lewis,et al.  Cryptic signals and the fidelity of V(D)J joining , 1997, Molecular and cellular biology.

[37]  N. Rosenberg,et al.  Assessing the pathogenic potential of the V(D)J recombinase by interlocus immunoglobulin light-chain gene rearrangement , 1997, Molecular and cellular biology.

[38]  D. Roth,et al.  The 12/23 rule is enforced at the cleavage step of V(D)J recombination in vivo , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[39]  Dale A Ramsden,et al.  The RAG1 and RAG2 Proteins Establish the 12/23 Rule in V(D)J Recombination , 1996, Cell.

[40]  David G. Schatz,et al.  Initiation of V(D)J recombination in vitro obeying the 12/23 rule , 1996, Nature.

[41]  H. Sakano,et al.  Essential residues in V(D)J recombination signals. , 1994, Journal of immunology.

[42]  M. Hallet,et al.  Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes , 1994, The Journal of experimental medicine.

[43]  M. Diaz,et al.  Molecular analysis of the T-cell acute lymphoblastic leukemia-associated t(1;7)(p34;q34) that fuses LCK and TCRB. , 1994, Blood.

[44]  F. Sigaux,et al.  MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. , 1993, Oncogene.

[45]  A. Zelenetz,et al.  BCL2 oncogene translocation is mediated by a chi-like consensus , 1992, The Journal of experimental medicine.

[46]  T. Kyo,et al.  Cytogenetic 2; 18 and 18; 22 translocation in chronic lymphocytic leukemia with juxtaposition of bcl-2 and immunoglobulin light chain genes. , 1992, Oncogene.

[47]  A. Ho,et al.  S1 nuclease hypersensitive sites in an oligopurine/oligopyrimidine DNA from the t(10;14) breakpoint cluster region. , 1992, Nucleic acids research.

[48]  S. Raimondi,et al.  c-tal, a helix-loop-helix protein, is juxtaposed to the T-cell receptor-beta chain gene by a reciprocal chromosomal translocation: t(1;7)(p32;q35). , 1991, Blood.

[49]  J. Sklar,et al.  Transrearrangements between antigen receptor genes in normal human lymphoid tissues and in ataxia telangiectasia. , 1991, Journal of immunology.

[50]  J. Sklar,et al.  Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia , 1991, The Journal of experimental medicine.

[51]  M. Perutz,et al.  The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Rabbitts,et al.  A study of chromosome 11p13 translocations involving TCR beta and TCR delta in human T cell leukaemia. , 1991, Oncogene.

[53]  A. Carroll,et al.  Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia , 1990, The Journal of experimental medicine.

[54]  S. Raimondi,et al.  Molecular characterization of the t(10;14) translocation breakpoints in T‐cell acute lymphoblastic leukemia: Further evidence for illegitimate physiological recombination , 1990, Genes, chromosomes & cancer.

[55]  Stanley Lipkowitz,et al.  Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes , 1990, The Journal of experimental medicine.

[56]  E. Zucca,et al.  Direct sequence analysis of the 14q+ and 18q- chromosome junctions in follicular lymphoma. , 1990, Blood.

[57]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[58]  R. Baer,et al.  The chromosome translocation (11;14)(p13;q11) associated with T cell acute leukemia. Asymmetric diversification of the translocational junctions , 1990, The Journal of experimental medicine.

[59]  J. Sklar,et al.  T cell receptor gene trans-rearrangements: chimeric gamma-delta genes in normal lymphoid tissues. , 1989, Science.

[60]  T. Rabbitts,et al.  Alternating purine‐pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. , 1989, The EMBO journal.

[61]  P. Nowell,et al.  Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Lieber,et al.  V(D)J recombination: a functional definition of the joining signals. , 1989, Genes & development.

[63]  M. Siciliano,et al.  The chromosome translocation (11;14)(p13;q11) associated with T-cell acute lymphocytic leukemia: an 11p13 breakpoint cluster region. , 1989, Blood.

[64]  P. Nowell,et al.  Clustering of breakpoints on chromosome 10 in acute T-cell leukemias with the t(10;14) chromosome translocation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[66]  T. Mak,et al.  The T-cell receptor delta chain locus is disrupted in the T-ALL associated t(11;14)(p13;q11) translocation , 1989 .

[67]  T. Waldmann,et al.  Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Sklar,et al.  Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia , 1989, The Journal of experimental medicine.

[69]  L. Buluwela,et al.  A cluster of chromosome 11p13 translocations found via distinct D‐D and D‐D‐J rearrangements of the human T cell receptor delta chain gene. , 1988, EMBO Journal.

[70]  Y. Tsujimoto,et al.  The reciprocal partners of both the t(14; 18) and the t(11; 14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. , 1988, Oncogene.

[71]  S. Akira,et al.  Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. , 1987, Science.

[72]  M. Lieber,et al.  Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals , 1987, Cell.

[73]  F. Haluska,et al.  The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V–D–J joining , 1986, Nature.

[74]  C. Denny,et al.  Burkitt lymphoma cell line carrying a variant translocation creates new DNA at the breakpoint and violates the hierarchy of immunoglobulin gene rearrangement , 1985, Molecular and cellular biology.

[75]  C. Croce,et al.  The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. , 1985, Science.

[76]  S. Korsmeyer,et al.  Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around Jh on chromosome 14 and near a transcriptional unit on 18 , 1985, Cell.

[77]  D. Baltimore,et al.  DNA elements are asymmetrically joined during the site-specific recombination of kappa immunoglobulin genes. , 1985, Science.

[78]  F. Alt,et al.  Developmentally controlled and tissue-specific expression of unrearranged VH gene segments , 1985, Cell.

[79]  P. Nowell,et al.  Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. , 1984, Science.

[80]  K. Baetz,et al.  Mouse RSS spacer sequences affect the rate ofV(D)J recombInatIon , 2007, Immunogenetics.

[81]  P. Aplan,et al.  Causes of oncogenic chromosomal translocation. , 2006, Trends in genetics : TIG.

[82]  M. Goodman Error-prone repair DNA polymerases in prokaryotes and eukaryotes. , 2002, Annual review of biochemistry.

[83]  B. Nadel,et al.  Alternative end-joining in follicular lymphomas’ t(14;18) translocation , 2002, Leukemia.

[84]  T. Kirchhoff,et al.  DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. , 2000, The EMBO journal.

[85]  S. Lewis,et al.  The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. , 1994, Advances in immunology.

[86]  C. Croce,et al.  The role of chromosomal translocations in B- and T-cell neoplasia. , 1987, Annual review of immunology.

[87]  D. Baltimore,et al.  Joining of VK to JK gene segments in a retroviral vector introduced into lymphoid cells , 1984, Nature.