MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution.

A new MoS2 protected n(+)p-junction Si photocathode for the renewable H2 evolution is presented here. MoS2 acts as both a protective and an electrocatalytic layer, allowing H2 evolution at 0 V vs. RHE for more than 5 days. Using a MoSx surface layer decreases the overpotential for H2 evolution by 200 mV.

[1]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[2]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[3]  Michael Grätzel,et al.  Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency , 2006 .

[4]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[5]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[6]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[7]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[8]  H. Vrubel,et al.  Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution , 2012 .

[9]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[10]  A. Barron,et al.  Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. , 2013, Physical chemistry chemical physics : PCCP.

[11]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[12]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[13]  A. Alivisatos,et al.  Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. , 2011, Angewandte Chemie.

[14]  I. Chorkendorff,et al.  A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. , 2013, Chemical communications.

[15]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[18]  A. Bond,et al.  Ionic-liquid-mediated active-site control of MoS2 for the electrocatalytic hydrogen evolution reaction. , 2012, Chemistry.

[19]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[20]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[21]  Nathan S. Lewis,et al.  Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes , 2011 .

[22]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[23]  A. Bond,et al.  Promoting the Formation of Active Sites with Ionic Liquids: A Case Study of MoS2 as Hydrogen‐Evolution‐Reaction Electrocatalyst , 2011 .

[24]  K. Osseo-asare,et al.  Solution chemistry of tungsten leaching systems , 1982 .