A Coarse-to-Fine Autofocus Approach for Very High-Resolution Airborne Stripmap SAR Imagery

An autofocus operation is an indispensable procedure to obtain well-focused images for synthetic-aperture radar (SAR) systems without precise navigation devices. Three challenges have been faced in the very high-resolution (VHR) airborne SAR autofocus due to the long cumulative time: the varying along-track velocity, the residual range cell migration (RCM), and the range-dependent phase errors with higher order components. When it comes to the stripmap mode, the autofocus becomes more complicated, since the scenario with a few strong scatterers is more likely to be encountered with a moving beam. Combining the merits of parametric and nonparametric autofocus algorithms, a robust motion error estimation method is proposed in this paper. First, we perform a stripmap multiaperture mapdrift autofocus operation to extract the along-track velocity and the most range-invariant errors, removing the residual RCM at a subaperture scale. Second, one referential center block is selected to retrieve the residual range-invariant error, which can eliminate the residual RCM globally in the range dimension. With a global high-quality input, the residual range-variant phase errors can be retrieved precisely utilizing a center-to-edge local maximum-likelihood weighted phase gradient autofocus kernel at last. Experiments on real VHR airborne stripmap SAR data are performed to demonstrate the robustness of the proposed method.

[1]  Timothy J. Schulz,et al.  Optimal Sharpness Function for SAR Autofocus , 2007, IEEE Signal Processing Letters.

[2]  Krzysztof S. Kulpa,et al.  Coherent MapDrift Technique , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Charles V. Jakowatz,et al.  New approach to strip-map SAR autofocus , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[4]  Xinhua Mao,et al.  Autofocus Correction of APE and Residual RCM in Spotlight SAR Polar Format Imagery , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[5]  刘畅,et al.  A Robust Motion Error Estimation Method Based on Raw Data , 2013 .

[6]  J. R. Moreira,et al.  A New Method Of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation , 1990 .

[7]  Jordi J. Mallorquí,et al.  Topography-dependent motion compensation for repeat-pass interferometric SAR systems , 2005, IEEE Geoscience and Remote Sensing Letters.

[8]  Lei Yang,et al.  A Robust Motion Compensation Approach for UAV SAR Imagery , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Armin W. Doerry,et al.  Autofocus correction of excessive migration in synthetic aperture radar images. , 2004 .

[10]  Zheng Bao,et al.  Wavenumber-Domain Autofocusing for Highly Squinted UAV SAR Imagery , 2012, IEEE Sensors Journal.

[11]  Xinhua Mao,et al.  Multi-Subaperture PGA for SAR Autofocusing , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[12]  G. Franceschetti,et al.  Motion compensation errors: effects on the accuracy of airborne SAR images , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Mateo Burgos-García,et al.  SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell , 2008, Sensors.

[14]  G. Donohoe,et al.  Subaperture autofocus for synthetic aperture radar , 1994 .

[15]  Junjie Wu,et al.  Motion Errors and Compensation for Bistatic Forward-Looking SAR With Cubic-Order Processing , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Alberto Moreira,et al.  An Autofocus Approach for Residual Motion Errors With Application to Airborne Repeat-Pass SAR Interferometry , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Tat Soon Yeo,et al.  Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[18]  H. Cantalloube,et al.  Airborne X-band SAR imaging with 10 cm resolution: technical challenge and preliminary results , 2006 .

[19]  Irena Hajnsek,et al.  Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications , 2013, Proceedings of the IEEE.

[20]  Junfeng Wang,et al.  SAR Minimum-Entropy Autofocus Using an Adaptive-Order Polynomial Model , 2006, IEEE Geoscience and Remote Sensing Letters.

[21]  A. R. Brenner,et al.  PAMIR - a wideband phased array SAR/MTI system , 2003 .

[22]  Mengdao Xing,et al.  Robust Autofocusing Approach for Highly Squinted SAR Imagery Using the Extended Wavenumber Algorithm , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Carole E. Nahum,et al.  Multiscale Local Map-Drift-Driven Multilateration SAR Autofocus Using Fast Polar Format Image Synthesis , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[25]  Charles V. Jakowatz,et al.  Phase gradient autofocus-a robust tool for high resolution SAR phase correction , 1994 .

[26]  Alberto Moreira,et al.  Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation , 2006 .

[27]  Marco Martorella,et al.  A Contrast-Based Algorithm For Synthetic Range-Profile Motion Compensation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Zhimin Zhang,et al.  Autofocus Correction of Residual RCM for VHR SAR Sensors With Light-Small Aircraft , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Alberto Moreira,et al.  Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  Chibiao Ding,et al.  Precise Focusing of Airborne SAR Data With Wide Apertures Large Trajectory Deviations: A Chirp Modulated Back-Projection Approach , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[31]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[32]  Mengdao Xing,et al.  Motion Compensation for UAV SAR Based on Raw Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Zheng Bao,et al.  Weighted least-squares estimation of phase errors for SAR/ISAR autofocus , 1999, IEEE Trans. Geosci. Remote. Sens..

[34]  Alberto Moreira,et al.  Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes , 1996, IEEE Trans. Geosci. Remote. Sens..

[35]  Lei Yang,et al.  Compensation for the NsRCM and Phase Error After Polar Format Resampling for Airborne Spotlight SAR Raw Data of High Resolution , 2013, IEEE Geoscience and Remote Sensing Letters.

[36]  Jordi J. Mallorquí,et al.  Comparison of Topography- and Aperture-Dependent Motion Compensation Algorithms for Airborne SAR , 2007, IEEE Geoscience and Remote Sensing Letters.

[37]  Yi Liang,et al.  A Novel Motion Compensation Approach for Airborne Spotlight SAR of High-Resolution and High-Squint Mode , 2016, IEEE Geoscience and Remote Sensing Letters.

[38]  G. Fornaro Trajectory deviations in airborne SAR: analysis and compensation , 1999 .

[39]  Xinhua Mao,et al.  Two-dimensional Autofocus for Spotlight SAR Polar Format Imagery , 2015, IEEE Transactions on Computational Imaging.

[40]  F. Li,et al.  SAR Image Autofocus Utilizing Minimum-Entropy Criterion , 2013, IEEE Geoscience and Remote Sensing Letters.

[41]  David G. Long,et al.  Extending the phase gradient autofocus algorithm for low-altitude stripmap mode SAR , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[42]  Yang Gao,et al.  Sharpness-Based Autofocusing for Stripmap SAR Using an Adaptive-Order Polynomial Model , 2014, IEEE Geoscience and Remote Sensing Letters.