Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Joachim P Spatz,et al.  Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations. , 2010, Optics express.

[3]  J. Shieh,et al.  Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle. , 2010, Nanoscale.

[4]  Lifeng Li,et al.  Use of Fourier series in the analysis of discontinuous periodic structures , 1996 .

[5]  Z. Fan,et al.  Polarization effect of femtosecond pulse breakdown in subwavelength antireflective relief grating , 2011 .

[6]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[7]  Yoshiaki Kanamori,et al.  Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks , 2006 .

[8]  Young Min Song,et al.  Six-fold hexagonal symmetric nanostructures with various periodic shapes on GaAs substrates for efficient antireflection and hydrophobic properties. , 2011, Nanotechnology.

[9]  Sung Jun Jang,et al.  Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask. , 2012, Optics express.

[10]  M. Scarpulla,et al.  Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. , 2010, Optics express.

[11]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[12]  Lin Zhao,et al.  Theoretical investigation on the absorption enhancement of the crystalline silicon solar cells by pyramid texture coated with SiNx:H layer , 2011 .

[13]  Lifeng Chi,et al.  Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings , 2010 .

[14]  Mehmet Bayindir,et al.  Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces , 2011 .

[15]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[16]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1906 .

[17]  Young Min Song,et al.  Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures. , 2012, Optics express.

[18]  Subwavelength triangular random gratings , 2002 .

[19]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[20]  Wei-Ping Huang,et al.  Space mapping technique for design optimization of antireflection coatings in photonic devices , 2003 .

[21]  Caroline Fossati,et al.  The finite element method as applied to the diffraction by an anisotropic grating. , 2007, Optics express.

[22]  Gui-Rong Zhou,et al.  Design of deeply etched antireflective waveguide terminators , 2003 .

[23]  J N Mait,et al.  Broadband Antireflective Properties of Inverse Motheye Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[24]  Zhang Shao-feng,et al.  Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole , 2011 .

[25]  Hsuen‐Li Chen,et al.  Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells. , 2007, Optics express.

[26]  Z. Fan,et al.  Near-field distribution of broadband antireflective nanostructure arrays , 2012 .

[27]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[28]  E. Popov,et al.  Staircase approximation validity for arbitrary-shaped gratings. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  J. Yu,et al.  Antireflective properties of porous Si nanocolumnar structures with graded refractive index layers. , 2011, Optics letters.

[30]  Jae Su Yu,et al.  Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. , 2012, Optics express.

[31]  R Bouffaron,et al.  Enhanced antireflecting properties of micro-structured top-flat pyramids. , 2008, Optics express.

[32]  Edward Yi Chang,et al.  Finite element analysis of antireflective silicon nitride sub-wavelength structures for solar cell applications , 2010 .

[33]  Byoungho Lee,et al.  Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  J. Hench THE RCWA METHOD - A CASE STUDY WITH OPEN QUESTIONS AND PERSPECTIVES OF ALGEBRAIC COMPUTATIONS , 2008 .

[35]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[36]  Moustafa Y. Ghannam,et al.  Limitations of ray tracing techniques in optical modeling of silicon solar cells and photodiodes , 1998 .

[37]  Peichen Yu,et al.  Broadband and omnidirectional antireflection employing disordered GaN nanopillars. , 2008, Optics express.

[38]  J. Yu,et al.  Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface , 2011 .

[39]  F. Abelès,et al.  La théorie générale des couches minces , 1950 .

[40]  S. M. Rytov,et al.  Electromagnetic Properties of a Finely Stratified Medium , 2014 .

[41]  Drew A. Pommet,et al.  Optimal design for antireflective tapered two-dimensional subwavelength grating structures , 1995 .

[42]  C. S. Bhatia,et al.  Enhancement of optical transmission with random nanohole structures. , 2011, Optics express.

[43]  Marc Schnieper,et al.  Nano-structured anti-reflective surfaces replicated by hot embossing , 2002 .

[44]  Karl Knop,et al.  Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves , 1978 .

[45]  Peng Jiang,et al.  Broadband moth-eye antireflec tion coatings on silicon , 2008 .

[46]  Willie J. Padilla,et al.  Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical‐Frustum Arrays , 2011, Advanced materials.

[47]  J. Yamauchi,et al.  Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition , 1996, IEEE Photonics Technology Letters.

[48]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[49]  Young Min Song,et al.  Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. , 2011, Optics express.

[50]  T K Gaylord,et al.  Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs. , 1994, Applied optics.

[51]  Z. Ren,et al.  Antireflective characteristics of hemispherical grid grating , 2005 .

[52]  D. Stavenga,et al.  Evolution of color and vision of butterflies. , 2006, Arthropod structure & development.

[53]  I. Andonegui,et al.  The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities. , 2012, Optics express.

[54]  E Fred Schubert,et al.  Realization of a near-perfect antireflection coating for silicon solar energy utilization. , 2008, Optics letters.

[55]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[56]  K. Dalamagkidis,et al.  Omnidirectional antireflective properties of porous tungsten oxide films with in-depth variation of void fraction and stoichiometry , 2012 .

[57]  Rene Lopez,et al.  Large area nanofabrication of butterfly wing's three dimensional ultrastructures , 2012 .

[58]  P. Cheben,et al.  Gradient-index antireflective subwavelength structures for planar waveguide facets. , 2007, Optics letters.

[59]  Thomas K. Gaylord,et al.  Planar dielectric grating diffraction theories , 1982 .

[60]  Peng Jiang,et al.  Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures , 2008, Nanotechnology.

[61]  C. Ting,et al.  Subwavelength structures for broadband antireflection application , 2009 .

[62]  Hisao Kikuta,et al.  Ray tracing of an aspherical lens with antireflective subwavelength structured surfaces. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  J. Yu,et al.  Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells. , 2012, Optics express.

[64]  C. K. Lee,et al.  Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects , 2007 .

[65]  Peichen Yu,et al.  Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen , 2009 .

[66]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[67]  J. Yu,et al.  Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications. , 2011, Optics express.

[68]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[69]  Jérôme Primot,et al.  Wollaston prism-like devices based on blazed dielectric subwavelength gratings. , 2005, Optics express.

[70]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[71]  Ping Sheng,et al.  Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations , 1982 .

[72]  C. Ting,et al.  Subwavelength structured surfaces with a broadband antireflection function analyzed by using a finite difference time domain method , 2010 .

[73]  Young Min Song,et al.  Hydrophobic and antireflective characteristics of thermally oxidized periodic Si surface nanostructures , 2012 .

[74]  Joerg Bischoff,et al.  Improved diffraction computation with a hybrid C-RCWA-method , 2009, Advanced Lithography.

[75]  Surojit Chattopadhyay,et al.  Anti-reflecting and photonic nanostructures , 2010 .

[76]  Ekmel Ozbay,et al.  Resonant cavity based compact efficient antireflection structures for photonic crystals , 2007 .

[77]  M. Cao,et al.  The study of a nano-porous optical film with the finite difference time domain method , 2004 .

[78]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  H. Herzig,et al.  Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings. , 2011, Optics express.

[80]  Chang-Pin Chou,et al.  Antireflection subwavelength structures analyzed by using the finite difference time domain method , 2009 .

[81]  Lei Wang,et al.  Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces. , 2011, Optics letters.

[82]  Stuart A. Boden,et al.  Sunrise to sunset optimization of thin film antireflective coatings for encapsulated, planar silicon solar cells , 2009 .

[83]  T. Gaylord,et al.  Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. , 1986, Applied optics.

[84]  M. Moharam,et al.  Comparison between continuous and discrete subwavelength grating structures for antireflection surfaces , 1996 .

[85]  Chang-Pin Chou,et al.  Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process , 2008 .

[86]  Takashi Ando,et al.  Analysis of Dielectric Hollow Slab Waveguides Using the Finite-Difference Beam-Propagation Method , 1993 .

[87]  Multi-functional antireflective surface-relief structures based on nanoscale porous germanium with graded refractive index profiles. , 2013, Nanoscale.

[88]  Stuart A. Boden,et al.  Optimization of moth‐eye antireflection schemes for silicon solar cells , 2010 .

[89]  D. Maystre,et al.  A new theoretical method for diffraction gratings and its numerical application , 1980 .

[90]  P. Lalanne,et al.  Highly improved convergence of the coupled-wave method for TM polarization and conical mountings , 1996, Diffractive Optics and Micro-Optics.

[91]  Alexei Deinega,et al.  Antireflective properties of pyramidally textured surfaces. , 2010, Optics letters.

[92]  Peng Jiang,et al.  Bioinspired Self‐Cleaning Antireflection Coatings , 2008 .

[93]  B. Potapkin,et al.  Optimization of an anti-reflective layer of solar panels based on ab initio calculations , 2009 .

[94]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[95]  Weidong Zhou,et al.  Microstructured surface design for omnidirectional antireflection coatings on solar cells , 2007 .

[96]  M. Tanaka,et al.  Optical confinement and optical loss in high-efficiency a-Si solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[97]  T. Gaylord,et al.  Three-dimensional vector coupled-wave analysis of planar-grating diffraction , 1983 .

[98]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[99]  Zhenwu Lu,et al.  Vector coupled-wave analysis of hemispherical grid gratings for visible light , 2004 .

[100]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[101]  Hongbo He,et al.  Laser-induced damage properties of antireflective porous glasses , 2012 .

[102]  Albert Polman,et al.  Resonant nano-antennas for light trapping in plasmonic solar cells , 2011 .

[103]  F.L. Degertekin,et al.  Rigorous coupled-wave analysis of multilayered grating structures , 2004, Journal of Lightwave Technology.

[104]  Mark S. Mirotznik,et al.  Iterative design of moth‐eye antireflective surfaces at millimeter wave frequencies , 2010 .

[105]  W. Park,et al.  Site-specific design of cone-shaped Si nanowires by exploiting nanoscale surface diffusion for optimal photoabsorption , 2011 .

[106]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[107]  Christoph J. Brabec,et al.  Performance improvement of organic solar cells with moth eye anti-reflection coating , 2008 .

[108]  Hung-Yin Tsai,et al.  Finite Difference Time Domain Analysis of Three-Dimensional Sub-Wavelength Structured Arrays , 2008 .

[109]  Sahar A. El-Naggar,et al.  Shape and size dependence of the anti‐reflective and light‐trapping action of periodic grooves , 2002 .

[110]  Ying Tian,et al.  Design of highly efficient transmission gratings with deep etched triangular grooves. , 2012, Applied optics.

[111]  Evgeny Popov,et al.  Light Propagation in Periodic Media , 2002 .

[112]  Kazuhiro Yamada,et al.  Antireflective structure imprinted on the surface of optical glass by SiC mold , 2009 .

[113]  W. H. White,et al.  A Handbook of Physics , 2011 .

[114]  Jen-Hui Tsai,et al.  Fabrication of antireflection structures on TCO film for reflective liquid crystal display , 2009 .

[115]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[116]  D. R. Brown,et al.  Antireflective structures in CdTe and CdZnTe surfaces by ECR plasma etching , 2001 .

[117]  Albert Polman,et al.  Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells , 2009 .

[118]  Peng Jiang,et al.  Biomimetic subwavelength antireflective gratings on GaAs. , 2008, Optics letters.

[119]  Brahim Guizal,et al.  Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization , 1996 .

[120]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[121]  Joachim P. Spatz,et al.  Lessons from nature: biomimetic subwavelength structures for high‐performance optics , 2012 .

[122]  S. Boden,et al.  Bio-Mimetic Subwavelength Surfaces for Near-Zero Reflection Sunrise to Sunset , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.