Algebraic Properties of Fuzzy Morphological Operators based on Uninorms
暂无分享,去创建一个
J. Torrens | D. Ruiz | M. González | D. Ruiz | J. Torrens | M. González
[1] Bernard De Baets,et al. Uninorms: The known classes , 1998 .
[2] B. Baets,et al. The fundamentals of fuzzy mathematical morphology, part 2 : idempotence, convexity and decomposition , 1995 .
[3] Bernard De Baets,et al. A Fuzzy Morphology: a Logical Approach , 1998 .
[4] Etienne Kerre,et al. Fuzzy techniques in image processing , 2000 .
[5] Joan Torrens,et al. Residual implications and co-implications from idempotent uninorms , 2004, Kybernetika.
[6] Bernard De Baets,et al. Idempotent uninorms , 1999, Eur. J. Oper. Res..
[7] Jing Li Wang,et al. Color image segmentation: advances and prospects , 2001, Pattern Recognit..
[8] Isabelle Bloch,et al. Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..
[9] Ronald R. Yager,et al. Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[10] Bernard De Baets,et al. Residual operators of uninorms , 1999, Soft Comput..
[11] Christian Eitzinger,et al. Triangular Norms , 2001, Künstliche Intell..
[12] B. Baets,et al. The fundamentals of fuzzy mathematical morphology, part 1 : basic concepts , 1995 .