Save Up to 99% of Your Time in Mapping Validation

Identifying semantic correspondences between different vocabularies has been recognized as a fundamental step towards achieving interoperability. Several manual and automatic techniques have been recently proposed. Fully manual approaches are very precise, but extremely costly. Conversely, automatic approaches tend to fail when domain specific background knowledge is needed. Consequently, they typically require a manual validation step. Yet, when the number of computed correspondences is very large, the validation phase can be very expensive. In order to reduce the problems above, we propose to compute the minimal set of correspondences, that we call the minimal mapping, which are sufficient to compute all the other ones. We show that by concentrating on such correspondences we can save up to 99% of the manual checks required for validation.

[1]  Johannes Keizer,et al.  Comparing Human and Automatic Thesaurus Mapping Approaches in the Agricultural Domain , 2008, Dublin Core Conference.

[2]  I. McIlwaine Subject retrieval in a networked environment , 2002 .

[3]  Fausto Giunchiglia,et al.  Lightweight Ontologies , 2009, Encyclopedia of Database Systems.

[4]  Heike Neuroth,et al.  Renardus: cross-browsing European subject gateways via a common classification system (DDC) , 2003 .

[5]  Eric Yu,et al.  Conceptual Modeling: Foundations and Applications , 2009 .

[6]  Jérôme Euzenat,et al.  Ten Challenges for Ontology Matching , 2008, OTM Conferences.

[7]  Heiner Stuckenschmidt,et al.  Improving Automatically Created Mappings Using Logical Reasoning , 2006, Ontology Matching.

[8]  Fausto Giunchiglia,et al.  Mapping large-scale Knowledge Organization Systems , 2009 .

[9]  Enrico Motta,et al.  The Semantic Web - ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005, Proceedings , 2005, SEMWEB.

[10]  Heiner Stuckenschmidt,et al.  Reasoning about Ontology Mappings , 2005 .

[11]  Pat Molholt,et al.  Beyond the book : extending MARC for subject access , 1990 .

[12]  Ling Liu,et al.  Encyclopedia of Database Systems , 2009, Encyclopedia of Database Systems.

[13]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[14]  Fausto Giunchiglia,et al.  Discovering Missing Background Knowledge in Ontology Matching , 2006, ECAI.

[15]  John Mylopoulos,et al.  Journal on Data Semantics IX , 2007, Journal on Data Semantics IX.

[16]  Fausto Giunchiglia,et al.  Semantic Matching: Algorithms and Implementation , 2007, J. Data Semant..

[17]  Heiner Stuckenschmidt,et al.  Reasoning Support for Mapping Revision , 2009, J. Log. Comput..

[18]  Akrivi Katifori,et al.  Ontology visualization methods—a survey , 2007, CSUR.

[19]  Fausto Giunchiglia,et al.  Web Explanations for Semantic Heterogeneity Discovery , 2005, ESWC.

[20]  Luciano Serafini,et al.  Distributed Description Logics: Assimilating Information from Peer Sources , 2003, J. Data Semant..

[21]  Fausto Giunchiglia,et al.  Faceted Lightweight Ontologies , 2009, Conceptual Modeling: Foundations and Applications.

[22]  Diane Vizine-Goetz,et al.  Vocabulary Mapping for Terminology Services , 2004, J. Digit. Inf..

[23]  Lois Mai Chan,et al.  FAST (Faceted Application of Subject Terminology): A Simplified LCSH-based Vocabulary , 2003 .

[24]  Shiyali Ramamrita Ranganathan,et al.  The colon classification , 1965 .

[25]  Mary Czerwinski,et al.  Visualization of mappings between schemas , 2005, CHI.

[26]  Fausto Giunchiglia,et al.  Computing Minimal Mappings , 2009, OM.

[27]  Alon Y. Halevy,et al.  Why Your Data Won’t Mix , 2005, ACM Queue.

[28]  Fausto Giunchiglia,et al.  A Large Scale Taxonomy Mapping Evaluation , 2005, International Semantic Web Conference.

[29]  Ali Shiri,et al.  HILT: A Pilot Terminology Mapping Service with a DDC Spine , 2006 .

[30]  Margaret-Anne D. Storey,et al.  A Cognitive Support Framework for Ontology Mapping , 2007, ISWC/ASWC.

[31]  Fausto Giunchiglia,et al.  Encoding Classifications into Lightweight Ontologies , 2006, J. Data Semant..

[32]  Fausto Giunchiglia,et al.  Encoding classifications into lightweight ontologies , 2007 .