Relevance of Pipe Period on Kelvin-Voigt Viscoelastic Parameters: 1D and 2D Inverse Transient Analysis

AbstractThis paper presents the results of the calibration by means of a microgenetic algorithm, using Kelvin-Voigt viscoelastic parameters, to reproduce experimental unsteady flow tests in a polymeric pipe. During the tests, different pipe lengths—which give rise to different periods of the pressure oscillations—and initial discharges have been considered. The mechanical parameters of the viscoelastic models are estimated using both one-dimensional (1D) and quasi two-dimensional (2D) models. The calibration of Kelvin-Voigt models with 2, 3, 5, and 7 parameters, respectively, proves the substantial independence of the elastic modulus and the dependence of the retardation time on the pipe period (i.e., the pipe length). Moreover, in most cases, the increase in the number of mechanical parameters allows a better simulation of a single transient. However, the larger the number of parameters, the greater the risk of overfitting, and the more difficult the search for general laws of dependence of the parameter...

[1]  Giuseppe Pezzinga,et al.  Local Balance Unsteady Friction Model , 2009 .

[2]  Yeou-Koung Tung,et al.  Unsteady friction and visco-elasticity in pipe fluid transients , 2010 .

[3]  Silvia Meniconi,et al.  Leak detection in branched pipe systems coupling wavelet analysis and a Lagrangian model. , 2009 .

[4]  Giuseppe Pezzinga,et al.  EVALUATION OF UNSTEADY FLOW RESISTANCES BY QUASI-2D OR 1D MODELS. TECHNICAL NOTE , 2000 .

[5]  Silvia Meniconi,et al.  Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve , 2014 .

[6]  W. Zielke Frequency dependent friction in transient pipe flow , 1968 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  M. Greco,et al.  Effects of Two-Dimensionality on Pipe Transients Modeling , 1995 .

[9]  Cedo Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification , 2005 .

[10]  Bruno Brunone,et al.  Discussion of Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines , 2008 .

[11]  Luisa Fernanda Ribeiro Reis,et al.  Analysis of PVC Pipe-Wall Viscoelasticity during Water Hammer , 2008 .

[12]  A. Haghighi,et al.  Straightforward Transient-Based Approach for the Creep Function Determination in Viscoelastic Pipes , 2014 .

[13]  M. Ferrante,et al.  Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: long-period analysis , 2012 .

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  Giuseppe Pezzinga,et al.  QUASI-2D MODEL FOR UNSTEADY FLOW IN PIPE NETWORKS , 1999 .

[16]  K. Weinerowska-Bords,et al.  Viscoelastic model of waterhammer in single pipeline - problems and questions , 2006 .

[17]  A. Vardy,et al.  Transient turbulent friction in fully rough pipe flows , 2004 .

[18]  D. Carroll GENETIC ALGORITHMS AND OPTIMIZING CHEMICAL OXYGEN-IODINE LASERS , 1996 .

[19]  Bryan W. Karney,et al.  Velocity Profiles and Unsteady Pipe Friction in Transient Flow , 2000 .

[20]  A. Vardy,et al.  TRANSIENT TURBULENT FRICTION IN SMOOTH PIPE FLOWS , 2003 .

[21]  Katarzyna Weinerowska-Bords,et al.  Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow , 2015 .

[22]  M. Mitosek,et al.  Influence of visco-elasticity on pressure wave velocity in polyethylene MDPE pipe , 2003 .

[23]  Huan-Feng Duan,et al.  Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling , 2014 .

[24]  Huan-Feng Duan,et al.  Relevance of Unsteady Friction to Pipe Size and Length in Pipe Fluid Transients , 2012 .

[25]  Warren P. Mason,et al.  Introduction to polymer viscoelasticity , 1972 .

[26]  G. Kember,et al.  Water Hammer Analysis and Parameter Estimation in Polymer Pipes with Weak Strain-Rate Feedback , 2016 .

[27]  Angus R. Simpson,et al.  Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines , 2006 .

[28]  Prof.Dr.-Ing.habil. P.-G. Franke COMPUTATION OF UNSTEADY PIPE FLOW WITH RESPECT TO VISCO-ELASTIC MATERIAL PROPERTIES , 1983 .

[29]  J. Ferry Viscoelastic properties of polymers , 1961 .

[30]  K. Weinerowska-Bords Accuracy and parameter estimation of elastic and viscoelastic models of the water hammer , 2007 .

[31]  J. Vítkovský,et al.  Developments in unsteady pipe flow friction modelling , 2001 .

[32]  C. Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—experimental analysis and creep characterization , 2004 .

[33]  Bruno Brunone,et al.  Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement , 2010 .

[34]  Giuseppe Pezzinga,et al.  Evaluation of Time Evolution of Mechanical Parameters of Polymeric Pipes by Unsteady Flow Runs , 2014 .

[35]  Mohamed Salah Ghidaoui,et al.  Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer , 2002 .

[36]  H. Shamloo,et al.  Turbulence behaviour investigation in transient flows , 2015 .

[37]  Silvia Meniconi,et al.  Two-Dimensional Features of Viscoelastic Models of Pipe Transients , 2014 .

[38]  Giovanni De Marinis,et al.  Hydraulic Transients in Viscoelastic Branched Pipelines , 2015 .

[39]  Silvia Meniconi,et al.  Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes , 2012 .

[40]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.