Completeness and Correspondence in Hybrid Logic via an Extension of SQEMA
暂无分享,去创建一个
[1] L. Csirmaz,et al. Logic Colloquium '92 , 1995 .
[2] Valentin Goranko,et al. Modal logic with names , 1993, J. Philos. Log..
[3] M. Kracht. Tools and Techniques in Modal Logic , 1999 .
[4] Maarten Marx,et al. Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.
[5] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[6] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[7] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[8] Valentin Goranko,et al. Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..
[9] Michael Zakharyaschev,et al. Sahlqvist formulas are not so elementary even above S4 , 1996 .
[10] Valentin Goranko,et al. SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.
[11] B. T. Cate,et al. Model theory for extended modal languages , 2005 .
[12] Dimiter G. Skordev. Mathematical Logic and Its Applications , 2011 .
[13] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[14] Valentin Goranko,et al. Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..
[15] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[16] Willem Conradie,et al. On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.
[17] Tinko Tinchev,et al. Modal Environment for Boolean Speculations , 1987 .
[18] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..