Completeness and Correspondence in Hybrid Logic via an Extension of SQEMA

Abstract We develop a new algorithm, based upon the SQEMA-algorithm, for computing first-order frame correspondents of hybrid formulas. It is shown that the success of this algorithm on an input formula guarantees its sd-persistence and hence the completeness of the logic obtained by adding that formula as axiom to the basic hybrid system. These results are employed to obtain a hybridized extension of Sahlqvist's theorem.

[1]  L. Csirmaz,et al.  Logic Colloquium '92 , 1995 .

[2]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[3]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[4]  Maarten Marx,et al.  Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.

[5]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[6]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[7]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[8]  Valentin Goranko,et al.  Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..

[9]  Michael Zakharyaschev,et al.  Sahlqvist formulas are not so elementary even above S4 , 1996 .

[10]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[11]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[12]  Dimiter G. Skordev Mathematical Logic and Its Applications , 2011 .

[13]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[14]  Valentin Goranko,et al.  Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..

[15]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[16]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[17]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[18]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..