Unimodular lattices over real quadratic fields
暂无分享,去创建一个
[1] Y. Mimura. On the class number of a unit lattice over a ring of real quadratic integers , 1983, Nagoya Mathematical Journal.
[2] Horst Pfeuffer. Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern , 1971 .
[3] J. Hsia. Even positive definite unimodular quadratic forms over real quadratic fields , 1989 .
[4] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[5] G. Watson. Positive Quadratic Forms with Small Class‐Numbers , 1963 .
[6] Even positive definite unimodular quadratic forms over (√3) , 1991 .
[7] Etsuko Bannai. Positive Definite Unimodular Lattices with Trivial Automorphism Groups , 1988 .
[8] Neil J. A. Sloane,et al. Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[9] G. Watson. One-class genera of positive quadratic forms in at least five variables , 1975 .
[10] Rudolf Scharlau,et al. Integral lattices and hyperbolic reflection groups , 1992 .
[11] Über die reelle Spiegelungsgruppe H4 und die Klassenzahl der sechsdimensionalen Einheitsform , 1978 .
[12] Rainer Schulze-Pillot,et al. An algorithm for computing genera of ternary and quaternary quadratic forms , 1991, ISSAC '91.
[13] H. Pfeuffer. On a conjecture about class numbers of totally positive quadratic forms in totally real algebraic number fields , 1979 .
[14] Nicolas Bourbaki,et al. Groupes et algèbres de Lie , 1971 .
[15] O. O’Meara. Introduction to quadratic forms , 1965 .
[16] R. Salamon. Die Klassen im Geschlecht von X12+X22+X32 und X12+X22+X32+X42 über Z [√3] , 1969 .
[17] Patrick J. Costello,et al. Even unimodular 12-dimensional quadratic forms over Q(√5) , 1987 .
[18] G. Watson. The Class‐Number of a Positive Quadratic Form , 1963 .
[19] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[20] Einklassige Geschlechter von Einheitsformen in totalreellen algebraischen Zahlkörpern , 1977 .
[21] M. Kneser,et al. Klassenzahlen definiter quadratischer Formen , 1957 .
[22] Even unimodular 8-dimensional quadratic forms over $$\mathbb{Q}\left( {\sqrt 2 } \right)$$ , 1989 .