Adiabatic Invariance and Applications: From Molecular Dynamics to Numerical Weather Prediction

[1]  S. Reich,et al.  Vorticity and symplecticity in Lagrangian fluid dynamics , 2005 .

[2]  Berk Hess,et al.  Flexible constraints : An adiabatic treatment of quantum degrees of freedom, with application to the flexible and polarizable mobile charge densities in harmonic oscillators model for water , 2002 .

[3]  B. Leimkuhler,et al.  A reversible averaging integrator for multiple time-scale dynamics , 2001 .

[4]  David G. Andrews,et al.  An Introduction to Atmospheric Physics , 2000 .

[5]  Bernard R. Brooks,et al.  Elastic molecular dynamics with self-consistent flexible constraints , 2000 .

[6]  Sebastian Reich,et al.  Smoothed Langevin dynamics of highly oscillatory systems , 2000 .

[7]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[8]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[9]  Sebastian Reich,et al.  Multiple Time Scales in Classical and Quantum-Classical Molecular Dynamics , 1999 .

[10]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[11]  Reich Torsion dynamics of molecular systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  H. Yoshida,et al.  Long-Term Conservation of Adiabatic Invariants by Using Symplectic Integrators , 1996 .

[13]  Sebastian Reich,et al.  Smoothed dynamics of highly oscillatory Hamiltonian systems , 1995 .

[14]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[15]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[16]  J. Dormand,et al.  Smooth-Particle Hydrodynamics as Applied to 2-D Plume Convection , 1989 .

[17]  Antonio Giorgilli,et al.  Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part II , 1987 .

[18]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[19]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[20]  R. Practical use of Hamilton ’ s principle , 2005 .

[21]  Jason Frank,et al.  Conservation Properties of Smoothed Particle Hydrodynamics Applied to the Shallow Water Equation , 2001 .

[22]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[23]  Robert D. Skeel,et al.  Integration Schemes for Molecular Dynamics and Related Applications , 1999 .

[24]  S. Reich Preservation of adiabitic invariants under symplectic discretization , 1999 .

[25]  Folkmar Bornemann,et al.  Homogenization in Time of Singularly Perturbed Conservative Mechanical Systems , 1998 .

[26]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[27]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[28]  F. Takens Motion under the influence of a strong constraining force , 1980 .

[29]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[30]  P. Ungar,et al.  Motion under a strong constraining force , 1957 .