Reports in Informatics

We prove that for any e > 0 there exists an integer ne such that the pathwidth of every cubic (or 3-regular) graph on n > ne vertices is at most (1/6 + e)n. Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three.

[1]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[2]  Alexander S. Kulikov,et al.  A new approach to proving upper bounds for MAX-2-SAT , 2006, SODA '06.

[3]  Fabrizio Grandoni,et al.  Exact Algorithms for Hard Graph Problems , 2004 .

[4]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[5]  Robert Elsässer,et al.  New spectral lower bounds on the bisection width of graphs , 2000, Theor. Comput. Sci..

[6]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[8]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[9]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[10]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[11]  Bruce A. Reed Paths, Stars and the Number Three , 1996, Comb. Probab. Comput..

[12]  Burkhard Monien,et al.  Upper bounds on the bisection width of 3- and 4-regular graphs , 2006, J. Discrete Algorithms.

[13]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[14]  Ge Xia,et al.  Labeled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard Problems , 2003, Algorithmica.

[15]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[16]  Klaus Jansen,et al.  Polynomial Time Approximation Schemes for MAX-BISECTION on Planar and Geometric Graphs , 2005, SIAM J. Comput..

[17]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[18]  David S. Johnson,et al.  What are the least tractable instances of max independent set? , 1999, SODA '99.

[19]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[20]  Klaus Jansen,et al.  Polynomial Time Approximation Schemes for MAX-BISECTION on Planar and Geometric Graphs , 2001, SIAM J. Comput..

[21]  Stefan Richter,et al.  Algorithms Based on the Treewidth of Sparse Graphs , 2005, WG.

[22]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[23]  Ryan Williams A new algorithm for optimal constraint satisfaction and its implications , 2004, Electron. Colloquium Comput. Complex..

[24]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[25]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[26]  Burkhard Monien,et al.  Upper bounds on the bisection width of 3- and 4-regular graphs , 2001, J. Discrete Algorithms.