New Forcefields for Modeling Biomineralization Processes

A generic method for producing potentials to model organic-mineral systems is proposed. The method uses existing potentials for the components of the system and produces cross-term potentials between these components. The existing potentials are fitted to known mineral structures modeled with charges that mimic the Coulombic potential at the organic-mineral interface. The method has been applied to supply a set of potentials to model calcite biomineralization, including water-calcite, bicarbonate ions, and a set of organic functional groups with calcite. Tests comparing the results from ab initio and other potential-based calculations demonstrate that the new potential set is reliable and accurate.

[1]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[2]  S. C. Parker,et al.  Atomistic simulation of oxide surfaces and their reactivity with water , 1999 .

[3]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[4]  Andrei V. Bandura,et al.  Derivation of Force Field Parameters for TiO2−H2O Systems from ab Initio Calculations , 2003 .

[5]  T. G. Cooper,et al.  A computer modeling study of the inhibiting effect of organic adsorbates on calcite crystal growth , 2004 .

[6]  Luigi Delle Site,et al.  Interaction of Hydrated Amino Acids with Metal Surfaces: A Multiscale Modeling Description , 2007 .

[7]  M. Czajkowski,et al.  Brillouin spectrum of Ca(OH)2 , 1985 .

[8]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[9]  S. C. Parker,et al.  Molecular dynamics simulations of the interactions between water and inorganic solids , 2005 .

[10]  Julian D. Gale,et al.  Empirical potential derivation for ionic materials , 1996 .

[11]  Randall T. Cygan,et al.  Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field , 2004 .

[12]  G. D. Price,et al.  Interatomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational data , 1992 .

[13]  W. E. Brown,et al.  Crystal structure of calcium carbonate hexahydrate at about -120.deg. , 1970 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  D. Grebille,et al.  Hydrogen thermal motion in calcium hydroxide: Ca(OH)2 , 1993 .

[16]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[17]  J. Harding,et al.  The challenge of biominerals to simulations , 2006 .

[18]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[19]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[20]  S. C. Parker,et al.  Modelling of the thermal dependence of structural and elastic properties of calcite, CaCO3 , 1996 .

[21]  A. Chroneos,et al.  New atomic scale simulation models for hydroxides and oxyhydroxides , 2006 .

[22]  A. Shluger,et al.  Interaction of organic molecules with the TiO2 (110) surface: ab inito calculations and classical force fields. , 2006, The journal of physical chemistry. B.

[23]  Stephen C. Parker,et al.  Atomistic simulation of dislocations, surfaces and interfaces in MgO , 1996 .

[24]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[25]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[26]  S. C. Parker,et al.  Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces , 1997 .

[27]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[28]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[29]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[30]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[31]  S. C. Parker,et al.  Free energy of adsorption of water and metal ions on the [1014] calcite surface. , 2004, Journal of the American Chemical Society.

[32]  A. Goldstein,et al.  Computer Simulation of Protein Adsorption to a Material Surface in Aqueous Solution: Biomaterials Modeling of a Ternary System , 2004 .

[33]  F. Stillinger,et al.  Study of the water octamer using the polarization model of molecular interactions , 1980 .

[34]  S. C. Parker,et al.  Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach , 1998 .

[35]  David A. Fletcher,et al.  The United Kingdom Chemical Database Service , 1996, J. Chem. Inf. Comput. Sci..

[36]  S. C. Parker,et al.  Atomistic simulation of hydroxide ions in inorganic solids , 1996 .

[37]  R. Rawlings,et al.  The hydroxylation of t-ZrO2 surfaces , 2001 .

[38]  J. Harding,et al.  Simulation of organic monolayers as templates for the nucleation of calcite crystals. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[39]  Klaus-Peter Schröder,et al.  Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (HY zeolites) , 1992 .

[40]  S. Garofalini,et al.  Modeling of hydrophilic wafer bonding by molecular dynamics simulations , 2001 .

[41]  S. C. Parker,et al.  Atomistic Simulation of the Dissociative Adsorption of Water on Calcite Surfaces , 2003 .

[42]  S. C. Parker,et al.  Modeling the Competitive Adsorption of Water and Methanoic Acid on Calcite and Fluorite Surfaces , 1998 .