Length preserving numerical schemes for Landau-Lifshitz equation based on Lagrange multiplier approaches

We develop in this paper two classes of length preserving schemes for the Landau-Lifshitz equation based on two different Lagrange multiplier approaches. In the first approach, the Lagrange multiplier $\lambda(\bx,t)$ equals to $|\nabla m(\bx,t)|^2$ at the continuous level, while in the second approach, the Lagrange multiplier $\lambda(\bx,t)$ is introduced to enforce the length constraint at the discrete level and is identically zero at the continuous level. By using a predictor-corrector approach, we construct efficient and robust length preserving higher-order schemes for the Landau-Lifshitz equation, with the computational cost dominated by the predictor step which is simply a semi-implicit scheme. Furthermore, by introducing another space-independent Lagrange multiplier, we construct energy dissipative, in addition to length preserving, schemes for the Landau-Lifshitz equation, at the expense of solving one nonlinear algebraic equation. We present ample numerical experiments to validate the stability and accuracy for the proposed schemes, and also provide a performance comparison with some existing schemes.

[1]  Qing Cheng,et al.  A new Lagrange multiplier approach for constructing structure-preserving schemes, II. bound preserving , 2021, SIAM J. Numer. Anal..

[2]  Qing Cheng,et al.  A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving , 2021, Computer Methods in Applied Mechanics and Engineering.

[3]  Huadong Gao,et al.  Optimal Error Analysis of Euler and Crank-Nicolson Projection Finite Difference Schemes for Landau-Lifshitz Equation , 2021, SIAM J. Numer. Anal..

[4]  Weiwei Sun,et al.  Analysis of backward Euler projection FEM for the Landau–Lifshitz equation , 2021 .

[5]  Panchi Li,et al.  Two improved Gauss-Seidel projection methods for Landau-Lifshitz-Gilbert equation , 2019, J. Comput. Phys..

[6]  Cheng Wang,et al.  Second-order semi-implicit projection methods for micromagnetics simulations , 2019, J. Comput. Phys..

[7]  Michael Feischl,et al.  Higher-order linearly implicit full discretization of the Landau-Lifshitz-Gilbert equation , 2019, Math. Comput..

[8]  Changjian Xie,et al.  Convergence Analysis of A Second-order Semi-implicit Projection Method for Landau-Lifshitz Equation , 2019, 1902.09740.

[9]  Qing Cheng,et al.  Multiple Scalar Auxiliary Variable (MSAV) Approach and its Application to the Phase-Field Vesicle Membrane Model , 2018, SIAM J. Sci. Comput..

[10]  Georgios Akrivis,et al.  Stability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations , 2015, SIAM J. Numer. Anal..

[11]  Huadong Gao,et al.  Optimal Error Estimates of a Linearized Backward Euler FEM for the Landau-Lifshitz Equation , 2014, SIAM J. Numer. Anal..

[12]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[13]  Juan Vicente Gutiérrez-Santacreu,et al.  An Overview on Numerical Analyses of Nematic Liquid Crystal Flows , 2011 .

[14]  Santiago Badia,et al.  Finite element approximation of nematic liquid crystal flows using a saddle-point structure , 2011, J. Comput. Phys..

[15]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[16]  Andreas Prohl,et al.  Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation , 2007, Math. Comput..

[17]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[18]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[19]  François Alouges,et al.  CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU¿LIFSHITZ EQUATIONS IN MICROMAGNETISM , 2006 .

[20]  N. Walkington,et al.  Mixed Methods for the Approximation of Liquid Crystal Flows , 2002 .

[21]  E Weinan,et al.  A Gauss-Seidel projection method for micromagnetics simulations , 2001 .

[22]  E Weinan,et al.  Numerical Methods for the Landau-Lifshitz Equation , 2000, SIAM J. Numer. Anal..

[23]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[24]  F. Pistella,et al.  Numerical stability of a discrete model in the dynamics of ferromagnetic bodies , 1999 .

[25]  Boling Guo,et al.  The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps , 1993 .

[26]  M. Lakshmanan,et al.  Landau-Lifshitz equation of ferromagnetism: exact treatment of the Gilbert damping , 1984 .

[27]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[28]  Buyang Li,et al.  Convergence of Renormalized Finite Element Methods for Heat Flow of Harmonic Maps , 2022, SIAM J. Numer. Anal..

[29]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[30]  F. Lin,et al.  The analysis of harmonic maps and their heat flows , 2008 .

[31]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[32]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[33]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[34]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .