INCOMPLETE SELF-ORTHOGONAL LATIN SQUARES

We show that for all n > 3k + 1, n # 6, there exists an incomplete self-orthogonal latin square of order n with an empty order k subarray, called an ISOLS(n; k), except perhaps when (n; k) s {(6m + i\2m):i = 2,6}.

[1]  L. Zhu Orthogonal latin squares with subsquares , 1984, Discret. Math..

[2]  Douglas R. Stinson,et al.  On the spectrum of resolvable orthogonal arrays invariant under the Klein group K4 , 1983 .

[3]  David A. Drake,et al.  Pairwise Balanced Designs Whose Line Sizes Do Not Divide Six , 1983, J. Comb. Theory, Ser. A.

[4]  Katherine Heinrich,et al.  Existence of orthogonal latin squares with aligned subsquares , 1986, Discret. Math..

[5]  Douglas R. Stinson,et al.  Mols with holes , 1983, Discret. Math..

[6]  David A. Drake,et al.  Orthogonal latin squares with orthogonal subsquares , 1980 .

[7]  A. E. Brouwer,et al.  stichting mathematisch centrum , 2006 .

[8]  Robert K. Brayton,et al.  Self-orthogonal latin squares of all orders $n \ne 2,3,6$ , 1974 .

[9]  A. Hedayat A Generalization of Sum Composition: Self Orthogonal Latin Square Design with Sub Self Orthogonal Latin Square Designs , 1978, J. Comb. Theory, Ser. A.

[10]  W. D. Wallis,et al.  Orthogonal latin squares with small subsquares , 1983 .

[11]  Joseph Douglas Horton Sub-Latin Squares and Incomplete Orthogonal Arrays , 1974, J. Comb. Theory, Ser. A.

[12]  E. T. Parker,et al.  ORTHOGONAL LATIN SQUARES. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. S. Hedayat,et al.  On the theory and application of sum composition of Latin squares and orthogonal Latin squares. , 1974 .

[14]  Shinmin Patrick Wang On self-orthogonal Latin squares and partial transversals of Latin squares / , 1978 .

[15]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[16]  Anthony J. W. Hilton,et al.  On the Spectra of Certain Types of Latin Square , 1975, J. Comb. Theory, Ser. A.

[17]  Frank E. Bennett,et al.  On the spectrum of Stein quasigroups , 1980, Bulletin of the Australian Mathematical Society.