Systemic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum.
暂无分享,去创建一个
Ludovic Cottret | Marie-France Sagot | Federica Calevro | Hubert Charles | Gérard Febvay | Yvan Rahbé | Lilia Brinza | Stefano Colella | J. Fayard | S. Colella | M. Sagot | C. Gautier | J. Viñuelas | F. Calevro | H. Charles | G. Febvay | Y. Rahbé | L. Cottret | Lilia Brinza | G. Duport | Christian Gautier | José Viñuelas | Gabrielle Duport | Andréane Rabatel | Jean-Michel Fayard | Andréane Rabatel | Lilia Brînză | Ludovic Cottret
[1] Reinhard Diestel,et al. Graph Theory , 1997 .
[2] Andrés Moya,et al. A Small Microbial Genome: The End of a Long Symbiotic Relationship? , 2006, Science.
[3] A. Moya,et al. Why are the genomes of endosymbiotic bacteria so stable? , 2003, Trends in genetics : TIG.
[4] A. Nakabachi,et al. Aphids acquired symbiotic genes via lateral gene transfer , 2009, BMC Biology.
[5] A. Douglas. Conflict, cheats and the persistence of symbioses. , 2008, The New phytologist.
[6] A. Douglas,et al. Partitioning of Symbiotic Bacteria between Generations of an Insect: a Quantitative Study of a Buchnera sp. in the Pea Aphid (Acyrthosiphon pisum) Reared at Different Temperatures , 1997, Applied and environmental microbiology.
[7] H. Ishikawa,et al. Intracellular Bacterial Symbionts of Aphids Possess Many Genomic Copies per Bacterium , 1999, Journal of Molecular Evolution.
[8] A. Moya,et al. Genome size reduction through multiple events of gene disintegration in Buchnera APS. , 2001, Trends in genetics : TIG.
[9] H. Harada,et al. A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora , 1996 .
[10] A. Maxmen,et al. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress , 2002 .
[11] H. Ishikawa,et al. Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum , 1995 .
[12] N. Moran,et al. The Dynamics and Time Scale of Ongoing Genomic Erosion in Symbiotic Bacteria , 2009, Science.
[13] N. Moran,et al. Regulation of Transcription in a Reduced Bacterial Genome: Nutrient-Provisioning Genes of the Obligate Symbiont Buchnera aphidicola , 2005, Journal of bacteriology.
[14] N. Moran,et al. Sequence evolution in bacterial endosymbionts having extreme base compositions. , 1999, Molecular biology and evolution.
[15] A. Moya,et al. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. , 2002, Molecular biology and evolution.
[16] A. Moya,et al. Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. , 2003, Genome research.
[17] A. E. Douglas. Sulphate utilization in an aphid symbiosis , 1988 .
[18] Chi-Yung Lai,et al. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[19] N. Moran,et al. Evolutionary rates for tuf genes in endosymbionts of aphids. , 1998, Molecular biology and evolution.
[20] J. Galán,et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.
[21] N. Moran,et al. Evolutionary Origins of Genomic Repertoires in Bacteria , 2005, PLoS biology.
[22] P. Buchner. Endosymbiosis of Animals with Plant Microorganisms , 1965 .
[23] M. Munson,et al. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a Taxon Consisting of the Mycetocyte-Associated, Primary Endosymbionts of Aphids , 1991 .
[24] M. Fares,et al. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. , 2008, Molecular biology and evolution.
[25] N. Moran,et al. Costs and benefits of a superinfection of facultative symbionts in aphids , 2006, Proceedings of the Royal Society B: Biological Sciences.
[26] D. Mouchiroud,et al. Gene size reduction in the bacterial aphid endosymbiont, Buchnera. , 1999, Molecular biology and evolution.
[27] N. Moran. Bacterial menageries inside insects. , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[28] H. Ishikawa,et al. Genomic copy number of intracellular bacterial symbionts of aphids varies in response to developmental stage and morph of their host. , 2000, Insect biochemistry and molecular biology.
[29] N. Moran,et al. Tracing the evolution of gene loss in obligate bacterial symbionts. , 2003, Current opinion in microbiology.
[30] Federica Calevro,et al. Different Levels of Transcriptional Regulation Due to Trophic Constraints in the Reduced Genome of Buchnera aphidicola APS , 2006, Applied and Environmental Microbiology.
[31] N. Moran,et al. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects , 2005, Applied and Environmental Microbiology.
[32] N. Moran,et al. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families , 1991, Journal of bacteriology.
[33] N. Moran,et al. Intraspecific variation in symbiont genomes: bottlenecks and the aphid-buchnera association. , 2001, Genetics.
[34] N. Moran,et al. Consequences of reductive evolution for gene expression in an obligate endosymbiont , 2003, Molecular microbiology.
[35] A. Moya,et al. Chromosomal stasis versus plasmid plasticity in aphid endosymbiont Buchnera aphidicola , 2005, Heredity.
[36] N. Moran. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[37] T. Fukatsu,et al. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[38] J. Fayard,et al. Codon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum , 2006, Nucleic acids research.
[39] G. Febvay,et al. Analysis of energetic amino acid metabolism in Acyrthosiphon pisum: A multidimensional approach to amino acid metabolism in aphids , 1995 .
[40] J. R. Lobry,et al. Oriloc: prediction of replication boundaries in unannotated bacterial chromosomes , 2000, Bioinform..
[41] N. Moran,et al. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[42] Arkady B Khodursky,et al. Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.
[43] N. Moran,et al. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[44] T. Miura,et al. Developmental Origin and Evolution of Bacteriocytes in the Aphid–Buchnera Symbiosis , 2003, PLoS biology.
[45] Rahbe,et al. Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, acyrthosiphon pisum, reared on different diets , 1999, The Journal of experimental biology.
[46] N. Moran,et al. 50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.
[47] P. Baumann,et al. Levels of Buchnera aphidicola Chaperonin GroEL During Growth of the Aphid Schizaphis graminum , 1996, Current Microbiology.
[48] N. Moran,et al. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[49] G. Febvay,et al. Metabolic Fate of Energetic Amino Acids in the Aposymbiotic Pea Aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) , 1996 .
[50] Joshua T Herbeck,et al. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria). , 2005, Molecular biology and evolution.
[51] N. Moran,et al. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation , 2000 .
[52] H. Charles,et al. Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement. , 2004, Molecular biology and evolution.
[53] N. Moran,et al. Accumulation of Deleterious Mutations in Endosymbionts: Muller’s Ratchet with Two Levels of Selection , 2000, The American Naturalist.
[54] A. Moya,et al. Tempo and mode of early gene loss in endosymbiotic bacteria from insects , 2006, BMC Evolutionary Biology.
[55] N. Moran,et al. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola , 2001, Genome Biology.
[56] N. Moran,et al. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. , 1995, Annual review of microbiology.
[57] J. Viñuelas,et al. Impact of Host Developmental Age on the Transcriptome of the Symbiotic Bacterium Buchnera aphidicola in the Pea Aphid (Acyrthosiphon pisum) , 2009, Applied and Environmental Microbiology.
[58] Alfonso Valencia,et al. Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[59] Federica Calevro,et al. Conservation of the links between gene transcription and chromosomal organization in the highly reduced genome of Buchnera aphidicola , 2007, BMC Genomics.
[60] Javier Arsuaga,et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.
[61] B. Sabater-Muñoz,et al. Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story. , 2006, Gene.
[62] Andrés Moya,et al. Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[63] M. Hattori,et al. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS , 2000, Nature.
[64] N. Moran,et al. Functional genomics of Buchnera and the ecology of aphid hosts , 2005, Molecular ecology.
[65] H. Charles,et al. A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae, infered from phylogenetic analysis based on a heterogeneous model of DNA evolution. , 2001, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.
[66] A. Douglas. Phloem-sap feeding by animals: problems and solutions. , 2006, Journal of experimental botany.
[67] A. Moya,et al. Discovery and molecular characterization of a plasmid localized in Buchnera sp. bacterial endosymbiont of the aphid Rhopalosiphum padi , 1995, Journal of Molecular Evolution.
[68] A. Douglas,et al. Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis , 1992 .
[69] Hajime Ishikawa,et al. The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella , 2006, Science.
[70] M. Fares,et al. Selection for translational robustness in Buchnera aphidicola, endosymbiotic bacteria of aphids. , 2009, Molecular biology and evolution.
[71] A. Moya,et al. The Striking Case of Tryptophan Provision in the Cedar Aphid Cinara cedri , 2008, Journal of bacteriology.
[72] Igor Goryanin,et al. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola , 2009, BMC Systems Biology.
[73] A. Moya,et al. Determination of the Core of a Minimal Bacterial Gene Set , 2004, Microbiology and Molecular Biology Reviews.
[74] Bruno Torrésani,et al. Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data , 2005, BMC Genomics.
[75] N. Moran,et al. A genomic perspective on nutrient provisioning by bacterial symbionts of insects , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[76] T. Fukatsu,et al. Host Plant Specialization Governed by Facultative Symbiont , 2004, Science.
[77] H. Ishikawa,et al. Symbionin, an aphid endosymbiont-specific protein—I: Production of insects deficient in symbiont , 1985 .
[78] T. Fukatsu,et al. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae) , 1992 .
[79] Ran Blekhman,et al. The "domino theory" of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. , 2006, Molecular biology and evolution.
[80] Thomas Dandekar,et al. Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts , 2004, Microbiology and Molecular Biology Reviews.
[81] Michael J. Smith,et al. The Yersinia enterocolitica Motility Master Regulatory Operon, flhDC, Is Required for Flagellin Production, Swimming Motility, and Swarming Motility , 1999, Journal of bacteriology.
[82] T. Fukatsu,et al. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). , 2003, Arthropod structure & development.
[83] Paulien Hogeweg,et al. The role of mutational dynamics in genome shrinkage. , 2007, Molecular biology and evolution.
[84] J. Fayard,et al. Assessment of 35mer amino-modified oligonucleotide based microarray with bacterial samples. , 2004, Journal of microbiological methods.