Adaptive mesh refinement using piecewise-linear shape functions based on the blending function method

Use of quadrilateral elements for finite element mesh refinement can lead either to so-called ‘irregular’ meshes or the necessity of adjustments between finer and coarser parts of the mesh necessary. In the case of ‘irregular’ meshes, constraints have to be introduced in order to maintain continuity of the displacements. Introduction of finite elements based on blending function interpolation shape functions using piecewise boundary interpolation avoids these problems. This paper introduces an adaptive refinement procedure for these types of elements. The refinement is anh-method. Error estimation is performed using the Zienkiewicz-Zhu method. The refinement is controlled by a switching function representation. The method is applied to the plane stress problem. Numerical examples are given to show the efficiency of the methodology.

[1]  Klaus-Jürgen Bathe,et al.  Adaptive finite element analysis of large strain elastic response , 1993 .

[2]  W. J. Gordon,et al.  Substructured macro elements based on locally blended interpolation , 1977 .

[3]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[4]  Moshe Shpitalni,et al.  Finite element mesh generation via switching function representation , 1989 .

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[6]  J. Z. Zhu,et al.  Superconvergence recovery technique and a posteriori error estimators , 1990 .

[7]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[8]  Jaroslav Mackerle,et al.  Error analysis, adaptive techniques and finite and boundary elements—a bibliography (1992–1993) , 1994 .

[9]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[10]  Jaroslav Mackerle,et al.  Mesh generation and refinement for FEM and BEM: a bibliography (1990–1993) , 1993 .

[11]  W J Gordon,et al.  Multivariate approximation by locally blended univariate interpolants. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. J. Gordon,et al.  Ritz-Galerkin approximations in blending function spaces , 1976 .

[13]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  W. J. Gordon Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation , 1971 .

[16]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[17]  O. Zienkiewicz,et al.  Analysis of the Zienkiewicz–Zhu a‐posteriori error estimator in the finite element method , 1989 .

[18]  Leszek Demkowicz,et al.  Advances in adaptive improvements : A survey of adaptive finite element methods in computational mechanics , 1988 .

[19]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .