The automated data extraction, processing, and tracking system for CHARIS

CHARIS is an IFS designed for imaging and spectroscopy of disks and sub-stellar companions. To improve ease of use and efficiency of science production, we present progress on a fully-automated backend for CHARIS. This Automated Data Extraction, Processing, and Tracking System (ADEPTS) will log data files from CHARIS in a searchable database and perform all calibration and data extraction, yielding science-grade data cubes. The extracted data will also be run through a preset array of post-processing routines. With significant parallelization of data processing, ADEPTS will dramatically reduce the time between data acquisition and the availability of science-grade data products.

[1]  Timothy D. Brandt,et al.  SCExAO/CHARIS Direct Imaging Discovery of a 20 au Separation, Low-mass Ratio Brown Dwarf Companion to an Accelerating Sun-like Star , 2020, The Astrophysical Journal Letters.

[2]  C. Baranec,et al.  RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION , 2014, 1409.6388.

[3]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[4]  Olivier Guyon,et al.  The CHARIS IFS for high contrast imaging at Subaru , 2015, SPIE Optical Engineering + Applications.

[5]  Craig Loomis,et al.  Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction , 2017, 1706.03067.

[6]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[7]  Timothy D. Brandt,et al.  SCExAO/CHARIS Near-IR High-contrast Imaging and Integral Field Spectroscopy of the HIP 79977 Debris Disk , 2018, The Astronomical Journal.

[8]  Frantz Martinache,et al.  The optical design of CHARIS: an exoplanet IFS for the Subaru telescope , 2013, Optics & Photonics - Optical Engineering + Applications.

[9]  Timothy D. Brandt,et al.  SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk , 2020, The Astronomical Journal.

[10]  Julien Lozi,et al.  First light of the CHARIS high-contrast integral-field spectrograph , 2017, Optical Engineering + Applications.

[11]  Timothy D. Brandt,et al.  SCExAO/CHARIS High-contrast Imaging of Spirals and Darkening Features in the HD 34700 A Protoplanetary Disk , 2020, The Astrophysical Journal.

[12]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[13]  Frantz Martinache,et al.  No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals , 2019, The Astrophysical Journal.

[14]  Frantz Martinache,et al.  Conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru telescope , 2012, Other Conferences.

[15]  Olivier Guyon,et al.  Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.

[16]  Frantz Martinache,et al.  SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of κ And b: A Likely Young, Low-gravity Superjovian Companion , 2018, The Astronomical Journal.

[17]  Vanessa P. Bailey,et al.  Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey , 2018, 1801.01902.

[18]  Michael C. Liu,et al.  Substructure in the Circumstellar Disk Around the Young Star AU Microscopii , 2004, Science.

[19]  Craig Loomis,et al.  Laboratory testing and performance verification of the CHARIS integral field spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[20]  Laurent Pueyo,et al.  pyKLIP: PSF Subtraction for Exoplanets and Disks , 2015 .

[21]  Frantz Martinache,et al.  Scientific design of a high contrast integral field spectrograph for the Subaru Telescope , 2012, Other Conferences.

[22]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[23]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[24]  Adam Burrows,et al.  DIRECT IMAGING CONFIRMATION AND CHARACTERIZATION OF A DUST-ENSHROUDED CANDIDATE EXOPLANET ORBITING FOMALHAUT , 2012, 1210.6620.

[25]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[26]  Frantz Martinache,et al.  Isochronal age-mass discrepancy of young stars: SCExAO/CHARIS integral field spectroscopy of the HIP 79124 triple system , 2018, Astronomy & Astrophysics.

[27]  N. Jeremy Kasdin,et al.  The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope , 2014, Astronomical Telescopes and Instrumentation.

[28]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.