PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b

GJ 1132 b is a nearby Earth-sized exoplanet transiting an M dwarf, and is amongst the most highly characterizable small exoplanets currently known. In this paper we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ~10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132 b from our simulations is a tenuous atmosphere dominated by O2, although for very large initial water abundances atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system's lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132 b. Further modeling is needed to study the evolution of CO2 or N2-rich atmospheres on GJ 1132 b.

[1]  Y. Abe,et al.  Emergence of two types of terrestrial planet on solidification of magma ocean , 2013, Nature.

[2]  A. Ingersoll The Runaway Greenhouse: A History of Water on Venus , 1969 .

[3]  S. Ida,et al.  Water contents of Earth-mass planets around M dwarfs , 2015 .

[4]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[5]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[6]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[7]  T. Matsui,et al.  Partitioning of H and C between the mantle and core during the core formation in the Earth: Its implications for the atmospheric evolution and redox state of early mantle , 1996 .

[8]  M. Showalter,et al.  Enceladus: Cosmic Graffiti Artist Caught in the Act , 2007, Science.

[9]  Linda T. Elkins-Tanton,et al.  Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars , 2003 .

[10]  Feng Tian,et al.  History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs , 2015 .

[11]  Arnold Hanslmeier,et al.  The CoRoT space mission : early results Special feature Determining the mass loss limit for close-in exoplanets : what can we learn from transit observations ? , 2009 .

[12]  J. Holloway GRAPHITE-MELT EQUILIBRIA DURING MANTLE MELTING : CONSTRAINTS ON CO2 IN MORB MAGMAS AND THE CARBON CONTENT OF THE MANTLE , 1998 .

[13]  S. Seager,et al.  EFFECTS OF STELLAR FLUX ON TIDALLY LOCKED TERRESTRIAL PLANETS: DEGREE-1 MANTLE CONVECTION AND LOCAL MAGMA PONDS , 2011 .

[14]  Philippe Lognonné,et al.  A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content , 2009 .

[15]  J. Donati,et al.  Effects of M dwarf magnetic fields on potentially habitable planets , 2013, 1306.4789.

[16]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[17]  Lars Hernquist,et al.  MINIMUM RADII OF SUPER-EARTHS: CONSTRAINTS FROM GIANT IMPACTS , 2010, 1003.0451.

[18]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[19]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[20]  H. Lichtenegger,et al.  Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch , 2010 .

[21]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[22]  Dorian S. Abbot,et al.  Deciphering thermal phase curves of dry, tidally locked terrestrial planets , 2014 .

[23]  Mercedes Lopez-Morales,et al.  FEASIBILITY STUDIES FOR THE DETECTION OF O2 IN AN EARTH-LIKE EXOPLANET , 2013, 1312.1585.

[24]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[25]  Dimitar Sasselov,et al.  MASS–RADIUS RELATION FOR ROCKY PLANETS BASED ON PREM , 2015, 1512.08827.

[26]  A. Segura,et al.  Atmospheric mass loss by stellar wind from planets around main sequence M stars , 2010, 1006.0021.

[27]  B. Demory THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS , 2014, 1405.3798.

[28]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[29]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[30]  S. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey.II.The Southern M Dwarfs and Investigation of Magnetic Activity , 1996 .

[31]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[32]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW , 2016, 1602.09142.

[33]  Marc M. Hirschmann,et al.  Mantle solidus: Experimental constraints and the effects of peridotite composition , 2000 .

[34]  Arnold Hanslmeier,et al.  XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape. , 2012, Astrobiology.

[35]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[36]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[37]  M. Ikoma,et al.  Constraints on the Mass of a Habitable Planet with Water of Nebular Origin , 2006, astro-ph/0606117.

[38]  D. Bercovici,et al.  Divergent evolution of Earth and Venus: Influence of degassing, tectonics, and magnetic fields , 2013 .

[39]  E. Chassefière,et al.  Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: The case of Venus , 1996 .

[40]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[41]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[42]  Arnold Hanslmeier,et al.  XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. , 2012, Astrobiology.

[43]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[44]  Y. Fukai The iron–water reaction and the evolution of the Earth , 1984, Nature.

[45]  Emmanuel Marcq,et al.  Thermal evolution of an early magma ocean in interaction with the atmosphere , 2012 .

[46]  R. Pierrehumbert,et al.  WATER LOSS FROM TERRESTRIAL PLANETS WITH CO2-RICH ATMOSPHERES , 2013, 1306.3266.

[47]  F. Adams,et al.  Magnetically controlled mass-loss from extrasolar planets in close orbits , 2014, 1408.3636.

[48]  M. Hirschmann,et al.  Dehydration melting of nominally anhydrous mantle: The primacy of partitioning , 2009 .

[49]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[50]  Kevin France,et al.  THE INTRINSIC EXTREME ULTRAVIOLET FLUXES OF F5 V TO M5 V STARS , 2013, 1310.1360.

[51]  J. Head,et al.  Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution , 2012, 1207.3993.

[52]  Lisa Kaltenegger,et al.  THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS , 2014, 1412.1764.

[53]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[54]  K. Zahnle,et al.  Low simulated radiation limit for runaway greenhouse climates , 2013 .

[55]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[56]  D. Stegman,et al.  Implications of a long‐lived basal magma ocean in generating Earth's ancient magnetic field , 2013 .

[57]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[58]  P. Papale Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids , 1997 .

[59]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[60]  K. Poppenhaeger,et al.  MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE PLANETS ORBITING M-DWARF STARS , 2014, 1405.7707.

[61]  F. Tian THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS , 2009 .

[62]  N. Pizzolato,et al.  The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs ? , 2003 .

[63]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[64]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[65]  H. Lichtenegger,et al.  Atmospheric and water loss from early Venus , 2006 .

[66]  S. Czesla,et al.  X-RAY EMISSION FROM THE SUPER-EARTH HOST GJ 1214 , 2014, 1407.2741.

[67]  A. Coustenis,et al.  What makes a planet habitable? , 2009 .

[68]  D. Hunten,et al.  Mass fractionation in hydrodynamic escape , 1987 .

[69]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. III. X-RAY TO INFRARED SPECTRA OF 11 M AND K STARS HOSTING PLANETS , 2016, 1604.04776.

[70]  J. Kasting,et al.  Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. , 1990, Icarus.

[71]  J. Fortney,et al.  Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. , 2015, Astrobiology.

[72]  David Charbonneau,et al.  THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS , 2016, 1604.03135.

[73]  C. Sandu,et al.  Degassing history of Mars and the lifespan of its magnetic dynamo , 2012 .

[74]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[75]  S. Mohanty,et al.  Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres , 2016, 1601.05143.

[76]  Raymond T. Pierrehumbert,et al.  Principles of Planetary Climate: Radiative transfer in temperature-stratified atmospheres , 2010 .

[77]  L. Elkins‐Tanton Linked magma ocean solidification and atmospheric growth for Earth and Mars , 2008 .

[78]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[79]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[80]  E. Gaidos,et al.  MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS , 2011, 1106.4341.

[81]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[82]  J. Kasting O2 concentrations in dense primitive atmospheres: commentary , 1995, Planetary and space science.

[83]  K. Zahnle,et al.  Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere , 1986 .

[84]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[85]  B. Roynette,et al.  A new proof of Kellerer’s theorem , 2012 .

[86]  D. Sasselov,et al.  THE PERSISTENCE OF OCEANS ON EARTH-LIKE PLANETS: INSIGHTS FROM THE DEEP-WATER CYCLE , 2015, 1501.00735.

[87]  Sarah Kendrew,et al.  Telling twins apart: exo-Earths and Venuses with transit spectroscopy , 2016, 1602.08277.

[88]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. II. INTRINSIC LYα AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS , 2016, 1604.01032.

[89]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[90]  I. Carmichael,et al.  The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states , 1991 .

[91]  Robin Wordsworth,et al.  ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS , 2014, 1403.2713.

[92]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[93]  D. Bercovici,et al.  Initiation of plate tectonics from post‐magma ocean thermochemical convection , 2012, 1410.7712.

[94]  “Hot Jupiters” , 2006 .