Advances in Scalable Computational Chemistry: NWChem

Abstract NWChem is the highly scalable computational chemistry software package developed by the Molecular Sciences Software group for the Environmental Molecular Sciences Laboratory. The software provides a wide range of capabilities for quantum mechanical and classical mechanical modeling and simulation of chemical and biological systems. The software infrastructure has been designed to facilitate the rapid development and integration of new application modules with a convenient mechanism to enable large-scale computations that rely on a combination of methodologies to be used. Built using the partitioned global address space-based Global Arrays programming model, the design of the software separates the architecture-dependent communication layer from the computational chemistry modules. This results in a highly portable code in which only a relatively small part of the code needs to be ported to new computer architectures.

[1]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[2]  Karol Kowalski,et al.  The active-space equation-of-motion coupled-cluster methods for excited electronic states: Full EOMCCSDt , 2001 .

[3]  Marcel Nooijen,et al.  Many‐body similarity transformations generated by normal ordered exponential excitation operators , 1996 .

[4]  Marat Valiev,et al.  A dianionic phosphorane intermediate and transition states in an associative A(N)+D(N) mechanism for the ribonucleaseA hydrolysis reaction. , 2009, Journal of the American Chemical Society.

[5]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[6]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[7]  M. Dupuis,et al.  An ab initio model of electron transport in hematite (α-Fe2O3) basal planes , 2003 .

[8]  T. P. Straatsma,et al.  Treatment of rotational isomers in free energy evaluations. Analysis of the evaluation of free energy differences by molecular dynamics simulations of systems with rotational isomeric states , 1989 .

[9]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[10]  Nelson,et al.  Plane-wave electronic-structure calculations on a parallel supercomputer. , 1993, Physical review. B, Condensed matter.

[11]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[12]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[13]  Niranjan Govind,et al.  Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem. , 2009, Journal of chemical theory and computation.

[14]  Michael C. Zerner,et al.  The linked singles and doubles model: An approximate theory of electron correlation based on the coupled‐cluster ansatz , 1982 .

[15]  Karol Kowalski,et al.  Parallel computation of coupled-cluster hyperpolarizabilities. , 2009, The Journal of chemical physics.

[16]  Rodney J. Bartlett,et al.  A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory , 1997 .

[17]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[18]  Marat Valiev,et al.  Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc–porphyrin in aqueous solution , 2008 .

[19]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[20]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[21]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[22]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[23]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[24]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[25]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[26]  A. J. Sadlej,et al.  Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals , 2007 .

[27]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[28]  S. Grimme Semiempirical hybrid density functional with perturbative second-order correlation. , 2006, The Journal of chemical physics.

[29]  Donald C. Comeau,et al.  The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states , 1993 .

[30]  Steven E. J. Bell,et al.  Reduced–size polarized basis sets for calculations of molecular electric properties. III. Second–row atoms , 2005 .

[31]  N. Oliphant,et al.  Coupled‐cluster method truncated at quadruples , 1991 .

[32]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[33]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[34]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[35]  Sriram Krishnamoorthy,et al.  Active-space completely-renormalized equation-of-motion coupled-cluster formalism: Excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer. , 2010, The Journal of chemical physics.

[36]  Tomasz Janowski,et al.  Efficient Parallel Implementation of the CCSD External Exchange Operator and the Perturbative Triples (T) Energy Calculation. , 2008, Journal of chemical theory and computation.

[37]  Marat Valiev,et al.  Combined quantum mechanical and molecular mechanics studies of the electron-transfer reactions involving carbon tetrachloride in solution. , 2008, The journal of physical chemistry. A.

[38]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[39]  Tjerk P. Straatsma,et al.  NWChem: Exploiting parallelism in molecular simulations , 2000 .

[40]  K. Rosso,et al.  Self-Exchange Electron Transfer Kinetics and Reduction Potentials for Anthraquinone Disulfonate , 2004 .

[41]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[42]  N. Nakatsuji,et al.  Cluster expansion of the wavefunction. Excited states , 1978 .

[43]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[44]  Marat Valiev,et al.  Interactions of Cl- and OH radical in aqueous solution. , 2009, The journal of physical chemistry. A.

[45]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[46]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .

[47]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[48]  M. Ratner Molecular electronic-structure theory , 2000 .

[49]  T. Straatsma,et al.  Multiconfiguration thermodynamic integration , 1991 .

[50]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[51]  N. Govind,et al.  Electric Field Gradients Calculated from Two-Component Hybrid Density Functional Theory Including Spin-Orbit Coupling. , 2010, Journal of chemical theory and computation.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[54]  Kimihiko Hirao,et al.  Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory , 1978 .

[55]  Robert A. van de Geijn,et al.  SUMMA: Scalable Universal Matrix Multiplication Algorithm , 1995 .

[56]  Tomasz Janowski,et al.  Quantum chemistry in parallel with PQS , 2009, J. Comput. Chem..

[57]  Roland Lindh,et al.  Utilizing high performance computing for chemistry: parallel computational chemistry. , 2010, Physical chemistry chemical physics : PCCP.

[58]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[59]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[60]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[61]  Tjerk P. Straatsma,et al.  Load balancing of molecular dynamics simulation with NWChem , 2001, IBM Syst. J..

[62]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[63]  Warren E. Pickett,et al.  Pseudopotential methods in condensed matter applications , 1989 .

[64]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[65]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[66]  A. Lipton,et al.  A QM/MM approach to interpreting 67Zn solid-state NMR data in zinc proteins. , 2008, Journal of the American Chemical Society.

[67]  Peter Pulay,et al.  Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files. , 2007, Journal of chemical theory and computation.

[68]  Kenneth B. Wiberg,et al.  Analysis of the effect of electron correlation on charge density distributions , 1992 .

[69]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .

[70]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[71]  Anna I. Krylov,et al.  Size-consistent wave functions for bond-breaking: the equation-of-motion spin-flip model , 2001 .

[72]  Eric J. Bylaska,et al.  Parallel Implementation of the Projector Augmented Plane Wave Method for Charged Systems , 2002 .

[73]  Scott B. Baden,et al.  Parallel implementation of γ‐point pseudopotential plane‐wave DFT with exact exchange , 2011, J. Comput. Chem..

[74]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[75]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[76]  J A McCammon,et al.  Theoretical calculations of relative affinities of binding. , 1991, Methods in enzymology.

[77]  Karol Kowalski,et al.  Coupled cluster calculations for static and dynamic polarizabilities of C60. , 2008, The Journal of chemical physics.

[78]  V. Tipparaju,et al.  Role of Many-Body Effects in Describing Low-Lying Excited States of π-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems. , 2011, Journal of chemical theory and computation.

[79]  Kimihiko Hirao,et al.  The higher-order Douglas–Kroll transformation , 2000 .

[80]  T. Straatsma,et al.  Assessment of the convergence of molecular dynamics simulations of lipopolysaccharide membranes , 2008 .

[81]  Marat Valiev,et al.  Hybrid approach for free energy calculations with high-level methods: application to the SN2 reaction of CHCl3 and OH- in water. , 2007, The Journal of chemical physics.

[82]  Scott B. Baden,et al.  Hard scaling challenges for ab initio molecular dynamics capabilities in NWChem: Using 100,000 CPUs per second , 2009 .

[83]  R J Bartlett,et al.  Parallel implementation of electronic structure energy, gradient, and Hessian calculations. , 2008, The Journal of chemical physics.

[84]  Marat Valiev,et al.  Phosphorylation reaction in cAPK protein kinase-free energy quantum mechanical/molecular mechanics simulations. , 2007 .

[85]  Robert J. Harrison,et al.  Parallel direct four-index transformations , 1996 .

[86]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[87]  Marat Valiev,et al.  Hybrid coupled cluster and molecular dynamics approach: application to the excitation spectrum of cytosine in the native DNA environment. , 2006, The Journal of chemical physics.

[88]  Michael W. Schmidt,et al.  A natural orbital diagnostic for multiconfigurational character in correlated wave functions , 1999 .

[89]  Mark S. Gordon,et al.  Coupled cluster algorithms for networks of shared memory parallel processors , 2007, Comput. Phys. Commun..

[90]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[91]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[92]  Karol Kowalski,et al.  New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. , 2004, The Journal of chemical physics.

[93]  D. Bernholdt,et al.  Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers , 1996 .

[94]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[95]  T. Straatsma,et al.  Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation , 2009, Proteins.

[96]  W. J. Stevens,et al.  Effective Potentials in Molecular Quantum Chemistry , 1984 .

[97]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[98]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[99]  J. Hammond,et al.  Coupled-cluster dynamic polarizabilities including triple excitations. , 2008, The Journal of chemical physics.

[100]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[101]  T. Straatsma,et al.  Separation‐shifted scaling, a new scaling method for Lennard‐Jones interactions in thermodynamic integration , 1994 .

[102]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .