Highly Cation Permselective Metal-Organic Framework Membranes with Leaf-Like Morphology.

Highly cation permselective metal-organic framework (MOF) membranes are desirable for the extraction of valuable metal cations. However, fabrication of defect-free and stable permselective MOF membranes is technically challenging, owing to their arduous self-assembly and poor water resistance, respectively. A simple and readily scalable method has been developed for the controlled in situ smart growth of UiO-66-NH2 into leaf-like nanostructures with tunable density of the leaves and the surface layer thickness. The self-assembly approach reproducibly fabricates seamless, ultrathin (<500 nm) UiO-66-NH2 membranes at the surface of anodic aluminum oxide. The membranes contain nanosized interstices among the MOF leaves, which enable maximum admission of ions within the membrane, and angstrom-sized inherent pores in every single UiO-66-NH2 crystal, which efficiently regulate the cation permselectivity. Consequently, the highest ever reported cation separations (Na+ /Mg2+ >200 and Li+ /Mg2+ >60) and excellent membrane stability during five sequential electrodialysis cycles are achieved. These characteristics position the fabricated MOF membranes as potential candidates for efficient extraction of pure lithium and sodium ions from salt lakes and seawater, respectively.

[1]  S. Wannapaiboon,et al.  Highly Porous Nanocrystalline UiO-66 Thin Films via Coordination Modulation Controlled Step-by-Step Liquid-Phase Growth , 2018, Crystal Growth & Design.

[2]  D. Hoke,et al.  Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation. , 2018, Angewandte Chemie.

[3]  Q. Ma,et al.  Zeolitic imidazolate framework-8 film coated stainless steel meshes for highly efficient oil/water separation. , 2018, Chemical communications.

[4]  Zonghai Chen,et al.  Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium‐Ion Batteries , 2018 .

[5]  J. Caro,et al.  High-Flux Membranes Based on the Covalent Organic Framework COF-LZU1 for Selective Dye Separation by Nanofiltration. , 2018, Angewandte Chemie.

[6]  Alexander Knebel,et al.  Wasser‐Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COF‐LZU1 für die Farbstoffabtrennung durch Nanofiltration , 2018 .

[7]  Zonghai Chen,et al.  Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. , 2018, Angewandte Chemie.

[8]  Jide Wang,et al.  A general and efficient approach for tuning the crystal morphology of classical MOFs. , 2018, Chemical communications.

[9]  M. Guiver,et al.  Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations. , 2017, Angewandte Chemie.

[10]  Christian J. Doonan,et al.  Mixed‐Matrix‐Membranen , 2017 .

[11]  Christian J. Doonan,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[12]  J. Larson,et al.  Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat , 2017, Science.

[13]  E. Litwiller,et al.  A Metal Chelating Porous Polymeric Support: The Missing Link for a Defect-Free Metal-Organic Framework Composite Membrane. , 2017, Angewandte Chemie.

[14]  Xinsheng Peng,et al.  Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. , 2016, Angewandte Chemie.

[15]  Wanqin Jin,et al.  Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. , 2016, Angewandte Chemie.

[16]  Gongping Liu,et al.  Membranen aus zweidimensionalen Materialien: eine neue Familie hochleistungsfähiger Trennmembranen , 2016 .

[17]  D. Jiang,et al.  Covalent organic frameworks: a materials platform for structural and functional designs , 2016, Nature Reviews Materials.

[18]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[19]  A. Cooper,et al.  Porous Organic Cage Thin Films and Molecular‐Sieving Membranes , 2016, Advanced materials.

[20]  W. Shen,et al.  Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. , 2016, Angewandte Chemie.

[21]  Xiaocheng Lin,et al.  Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. , 2015, Chemical communications.

[22]  Kang Li,et al.  Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. , 2015, Journal of the American Chemical Society.

[23]  Guojun Zhang,et al.  Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. , 2014, Angewandte Chemie.

[24]  Xiangyang Zhu,et al.  Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. , 2014, Chemical communications.

[25]  Huanting Wang,et al.  Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. , 2014, Chemical Society reviews.

[26]  Keiji Nakagawa,et al.  Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. , 2010, Nature chemistry.

[27]  L. Qiu,et al.  Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method , 2009 .

[28]  Wenbin Lin,et al.  Modulare Synthese von funktionellen nanoskaligen Koordinationspolymeren , 2009 .

[29]  Wenbin Lin,et al.  Modular synthesis of functional nanoscale coordination polymers. , 2009, Angewandte Chemie.

[30]  M. Armand,et al.  Building better batteries , 2008, Nature.

[31]  C. Serre,et al.  Microwave Synthesis of Chromium Terephthalate MIL‐101 and Its Benzene Sorption Ability , 2007 .

[32]  R. Masel,et al.  Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. , 2006, Journal of the American Chemical Society.

[33]  Weili Lin,et al.  Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. , 2006, Journal of the American Chemical Society.

[34]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[35]  Kang Li,et al.  Novel Organic‐Dehydration Membranes Prepared from Zirconium Metal‐Organic Frameworks , 2017 .