Data Integration in Poplar: ‘Omics Layers and Integration Strategies

Populus trichocarpa is an important biofuel feedstock that has been the target of extensive research and is emerging as a model organism for plants, especially woody perennials. This research has generated several large ‘omics datasets. However, only few studies in Populus have attempted to integrate various data types. This review will summarize various ‘omics data layers, focusing on their application in Populus species. Subsequently, network and signal processing techniques for the integration and analysis of these data types will be discussed, with particular reference to examples in Populus.

[1]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[2]  V. Helms,et al.  DNA co-methylation analysis suggests novel functional associations between gene pairs in breast cancer samples. , 2013, Human molecular genetics.

[3]  The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations , 2013, BMC Genomics.

[4]  James C. Schnable,et al.  Integration of omic networks in a developmental atlas of maize , 2016, Science.

[5]  G. Weiller,et al.  A gene expression atlas of the model legume Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[6]  Mathew G. Lewsey,et al.  Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape , 2016, Cell.

[7]  Margaret Woodhouse,et al.  Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules , 2017, Plant Cell.

[8]  Daniel Eriksson,et al.  Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data. , 2007, The Plant journal : for cell and molecular biology.

[9]  Kim-Anh Do,et al.  DINGO: differential network analysis in genomics , 2015, Bioinform..

[10]  R. Dixon,et al.  Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). , 2013, The Plant journal : for cell and molecular biology.

[11]  Ying Xu,et al.  RepPop: a database for repetitive elements in Populus trichocarpa , 2009, BMC Genomics.

[12]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[13]  A. Ragauskas,et al.  Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop Populus , 2019, Sustainable Energy & Fuels.

[14]  G. Casella,et al.  Comparative analysis of the transcriptomes of Populus trichocarpa and Arabidopsis thaliana suggests extensive evolution of gene expression regulation in angiosperms , 2008 .

[15]  M. Pellegrini,et al.  Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa , 2013, BMC Plant Biology.

[16]  A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome , 2012, Tree Genetics & Genomes.

[17]  Gerald A Tuskan,et al.  Defining the genetic components of callus formation: A GWAS approach , 2018, PloS one.

[18]  A. Franke,et al.  DNA methylome analysis using short bisulfite sequencing data , 2012, Nature Methods.

[19]  Joshua S. Paul,et al.  Genotype and SNP calling from next-generation sequencing data , 2011, Nature Reviews Genetics.

[20]  Sharlee Climer,et al.  A Custom Correlation Coefficient (CCC) Approach for Fast Identification of Multi‐SNP Association Patterns in Genome‐Wide SNPs Data , 2014, Genetic epidemiology.

[21]  Yixue Li,et al.  Detecting the borders between coding and non-coding DNA regions in prokaryotes based on recursive segmentation and nucleotide doublets statistics , 2012, BMC Genomics.

[22]  J. Magdalena,et al.  Methyl DNA immunoprecipitation. , 2009, Methods in molecular biology.

[23]  G. Tuskan,et al.  Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. , 2014, The New phytologist.

[24]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[25]  Thomas E. Bartlett,et al.  A DNA Methylation Network Interaction Measure, and Detection of Network Oncomarkers , 2014, PloS one.

[26]  T. Tschaplinski,et al.  Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. , 2014, Molecular plant-microbe interactions : MPMI.

[27]  Jaclyn N. Taroni,et al.  Integrative Networks Illuminate Biological Factors Underlying Gene–Disease Associations , 2016, bioRxiv.

[28]  William Stafford Noble,et al.  How does multiple testing correction work? , 2009, Nature Biotechnology.

[29]  L. Hoffmann,et al.  Poplar under drought: comparison of leaf and cambial proteomic responses. , 2011, Journal of proteomics.

[30]  Esteban Ballestar,et al.  Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. , 2008, BioTechniques.

[31]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[32]  Joakim Nivre AN EFFICIENT ALGORITHM , 2003 .

[33]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[34]  Artem Lysenko,et al.  Developing integrated crop knowledge networks to advance candidate gene discovery , 2016, Applied & translational genomics.

[35]  Jason H. Moore,et al.  Chapter 11: Genome-Wide Association Studies , 2012, PLoS Comput. Biol..

[36]  Andy M. Yip,et al.  Gene network interconnectedness and the generalized topological overlap measure , 2007, BMC Bioinformatics.

[37]  Matthew Stephens,et al.  WAVELET-BASED GENETIC ASSOCIATION ANALYSIS OF FUNCTIONAL PHENOTYPES ARISING FROM HIGH-THROUGHPUT SEQUENCING ASSAYS. , 2013, The annals of applied statistics.

[38]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[39]  E. Buckler,et al.  Structure of linkage disequilibrium in plants. , 2003, Annual review of plant biology.

[40]  Xuejun Dong,et al.  Wavelets for Agriculture and Biology: A Tutorial with Applications and Outlook , 2008 .

[41]  A. Bird,et al.  DNA methylation landscapes: provocative insights from epigenomics , 2008, Nature Reviews Genetics.

[42]  Johan Trygg,et al.  Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen. , 2009, Journal of proteome research.

[43]  L. E. McDonald,et al.  A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Maria Dulce Quelhas,et al.  Wavelet analysis of human DNA. , 2011, Genomics.

[45]  C. Schadt,et al.  Modification of plant cell wall chemistry impacts metabolome and microbiome composition in Populus PdKOR1 RNAi plants , 2018, Plant and Soil.

[46]  P. Loidl,et al.  Histone acetylation: lessons from the plant kingdom. , 2001, Trends in plant science.

[47]  Dong Zhang,et al.  The developmental dynamics of the Populus stem transcriptome , 2018, Plant biotechnology journal.

[48]  David Sundell,et al.  ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa , 2014, BMC Genomics.

[49]  Wendy S. Schackwitz,et al.  Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. , 2012, The New phytologist.

[50]  Haja N. Kadarmideen,et al.  Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data , 2014, BMC Systems Biology.

[51]  M. Pelizzola,et al.  The DNA methylome , 2011, FEBS letters.

[52]  T. LaFramboise,et al.  Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances , 2009, Nucleic acids research.

[53]  Hao Wang,et al.  GFDP: the gene family database in poplar , 2018, Database J. Biol. Databases Curation.

[54]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[55]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[56]  T. Tschaplinski,et al.  The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides. , 2019, Annals of botany.

[57]  Javad Zahiri,et al.  Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data , 2017, Plant Biotechnology Reports.

[58]  Y. J. Kim,et al.  A Network-Based Approach to Prioritize Results from Genome-Wide Association Studies , 2011, PloS one.

[59]  Benjamin J. Raphael,et al.  Network analysis of GWAS data. , 2013, Current opinion in genetics & development.

[60]  D. Sines Towards integration. , 1990, Nursing.

[61]  Weixiong Zhang,et al.  Allele-Specific Network Reveals Combinatorial Interaction That Transcends Small Effects in Psoriasis GWAS , 2014, PLoS Comput. Biol..

[62]  William Stafford Noble,et al.  Identification of higher-order functional domains in the human ENCODE regions. , 2007, Genome research.

[63]  L. Lovász,et al.  Annals of Discrete Mathematics , 1986 .

[64]  Ute Baumann,et al.  An atlas of gene expression from seed to seed through barley development , 2006, Functional & Integrative Genomics.

[65]  The Lancet Psychiatry Five years. , 2016, The lancet. Psychiatry.

[66]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[67]  Hairong Wei,et al.  Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network , 2018, PloS one.

[68]  Qinjun Huang,et al.  PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants , 2016, Scientific Reports.

[69]  K. Vandepoele,et al.  Comparative co-expression analysis in plant biology. , 2012, Plant, cell & environment.

[70]  Yoshiyuki Ogata,et al.  Approaches for extracting practical information from gene co-expression networks in plant biology. , 2007, Plant & cell physiology.

[71]  R. O’Malley,et al.  Mapping genome-wide transcription-factor binding sites using DAP-seq , 2017, Nature Protocols.

[72]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[73]  P. Laird Principles and challenges of genome-wide DNA methylation analysis , 2010, Nature Reviews Genetics.

[74]  Yuhong Tang,et al.  Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. , 2013, The Plant journal : for cell and molecular biology.

[75]  S. Maury,et al.  Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. , 2013, The New phytologist.

[76]  Rex T. Nelson,et al.  RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome , 2010, BMC Plant Biology.

[77]  Deborah A. Weighill,et al.  Characterization of DWARF14 Genes in Populus , 2016, Scientific Reports.

[78]  P. Visscher,et al.  Five years of GWAS discovery. , 2012, American journal of human genetics.

[79]  U. Ludewig,et al.  Site-Dependent Differences in DNA Methylation and Their Impact on Plant Establishment and Phosphorus Nutrition in Populus trichocarpa , 2016, PloS one.

[80]  Yoshiyuki Ogata,et al.  A database for poplar gene co-expression analysis for systematic understanding of biological processes, including stress responses , 2009, Journal of Wood Science.

[81]  Sharlee Climer,et al.  Parallel Accelerated Custom Correlation Coefficient Calculations for Genomics Applications , 2017, Parallel Comput..

[82]  Daniel A. Jacobson,et al.  Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves , 2018, PloS one.

[83]  J. Dvorak,et al.  Recombination: an underappreciated factor in the evolution of plant genomes , 2007, Nature Reviews Genetics.

[84]  G. Usai,et al.  A comparison of methods for LTR-retrotransposon insertion time profiling in the Populus trichocarpa genome , 2018 .

[85]  Manuele Bicego,et al.  The Grapevine Expression Atlas Reveals a Deep Transcriptome Shift Driving the Entire Plant into a Maturation Program[W][OA] , 2012, Plant Cell.

[86]  Li Liu,et al.  A dynamic gene expression atlas covering the entire life cycle of rice. , 2010, The Plant journal : for cell and molecular biology.

[87]  Keywan Hassani-Pak,et al.  Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes , 2017, J. Integr. Bioinform..

[88]  Atsushi Fukushima,et al.  A network perspective on nitrogen metabolism from model to crop plants using integrated 'omics' approaches. , 2014, Journal of experimental botany.

[89]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[90]  Elise A. R. Serin,et al.  Learning from Co-expression Networks: Possibilities and Challenges , 2016, Front. Plant Sci..

[91]  F. Loreto,et al.  UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. , 2015, Plant, cell & environment.

[92]  Robert Sutton,et al.  An introduction to wavelet transforms:aA tutorial approach , 2003 .

[93]  Keywan Hassani-Pak,et al.  KnetMiner - An integrated data platform for gene mining and biological knowledge discovery , 2017 .

[94]  Robert J. Schmitz,et al.  Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes , 2016, Nucleic acids research.

[95]  Wei Wei,et al.  The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns , 2005, Plant Ecology.

[96]  B. Sundberg,et al.  Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development , 2016, BMC Genomics.

[97]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[98]  Expression and integrated network analyses revealed functional divergence of NHX-type Na+/H+ exchanger genes in poplar , 2017, Scientific Reports.

[99]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[100]  Peter Langfelder,et al.  Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects , 2012, BMC Genomics.

[101]  Peter Langfelder,et al.  A Weighted SNP Correlation Network Method for Estimating Polygenic Risk Scores. , 2017, Methods in molecular biology.

[102]  Deborah A. Weighill,et al.  Wavelet-Based Genomic Signal Processing for Centromere Identification and Hypothesis Generation , 2019, Front. Genet..

[103]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[104]  Jan Karlsson,et al.  Modular gene expression in Poplar: a multilayer network approach. , 2009, The New phytologist.

[105]  Jun Wang,et al.  Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress , 2014, BMC Genetics.

[106]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[107]  Pietro Liò,et al.  Wavelets in bioinformatics and computational biology: state of art and perspectives , 2003, Bioinform..

[108]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[109]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[110]  C. Ye,et al.  Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa , 2014, Journal of experimental botany.

[111]  B. Vanyushin DNA methylation in plants. , 2008, Current topics in microbiology and immunology.

[112]  D. Kell,et al.  An introduction to wavelet transforms for chemometricians: A time-frequency approach , 1997 .

[113]  Erin T. Hamanishi,et al.  Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner , 2015, BMC Genomics.

[114]  G. Tuskan,et al.  Genome structure and emerging evidence of an incipient sex chromosome in Populus. , 2008, Genome research.

[115]  G. Taylor Populus: arabidopsis for forestry. Do we need a model tree? , 2002, Annals of botany.

[116]  C. Bock Analysing and interpreting DNA methylation data , 2012, Nature Reviews Genetics.

[117]  David Kainer,et al.  Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[118]  T. Tschaplinski,et al.  The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis , 2012, Tree Genetics & Genomes.

[119]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[120]  Jinwen Liu,et al.  Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. , 2015, Journal of proteomics.

[121]  Deborah A. Weighill,et al.  A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein , 2018, G3: Genes, Genomes, Genetics.

[122]  C. Ye,et al.  Analysis of the Drought Stress-Responsive Transcriptome of Black Cottonwood (Populus trichocarpa) Using Deep RNA Sequencing , 2014, Plant Molecular Biology Reporter.

[123]  Junhui Wang,et al.  SPTEdb: a database for transposable elements in salicaceous plants , 2018, Database J. Biol. Databases Curation.

[124]  C. Douglas,et al.  Populus: a model system for plant biology. , 2007, Annual review of plant biology.

[125]  Juan M. Orduña,et al.  Visualization of DNA methylation results through a GPU-based parallelization of the wavelet transform , 2018, The Journal of Supercomputing.

[126]  A. Korte,et al.  The advantages and limitations of trait analysis with GWAS: a review , 2013, Plant Methods.

[127]  S. Purcell,et al.  Pleiotropy in complex traits: challenges and strategies , 2013, Nature Reviews Genetics.

[128]  Mark F. Davis,et al.  Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing , 2017, Proceedings of the National Academy of Sciences.

[129]  D. Edwards,et al.  Advances in Integrating Genomics and Bioinformatics in the Plant Breeding Pipeline , 2018, Agriculture.

[130]  Johan Trygg,et al.  A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of Populus trees , 2018, BMC Genomics.

[131]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[132]  R. Sederoff,et al.  Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. , 2010, Plant & cell physiology.

[133]  Abhijeet R. Sonawane,et al.  Exploring regulation in tissues with eQTL networks , 2017, Proceedings of the National Academy of Sciences.

[134]  Francesca Chiaromonte,et al.  Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis , 2007, Genome Biology.

[135]  Lieven Sterck,et al.  Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. , 2006, The Plant journal : for cell and molecular biology.

[136]  W. Weckwerth Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. , 2011, Journal of proteomics.

[137]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[138]  Steven M. Tommasini,et al.  Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. , 2017, Cell systems.

[139]  J. Lämke,et al.  Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants , 2017, Genome Biology.

[140]  Sixue Chen,et al.  Advances in plant proteomics , 2006, Proteomics.

[141]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[142]  C. Biémont,et al.  Stress and transposable elements: co-evolution or useful parasites? , 2000, Heredity.

[143]  G. Siuzdak,et al.  Innovation: Metabolomics: the apogee of the omics trilogy , 2012, Nature Reviews Molecular Cell Biology.

[144]  Yan Zhang,et al.  Integrated Transcriptome Analysis Reveals Plant Hormones Jasmonic Acid and Salicylic Acid Coordinate Growth and Defense Responses upon Fungal Infection in Poplar , 2019, Biomolecules.

[145]  William J. Astle,et al.  Population Structure and Cryptic Relatedness in Genetic Association Studies , 2009, 1010.4681.

[146]  E. Scarano,et al.  DNA Methylation , 1973, Nature.

[147]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[148]  S. Zhang,et al.  Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress , 2010, Proteomics.

[149]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[150]  Leif Groop,et al.  The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants , 2016, European Journal of Human Genetics.

[151]  In suk Lee,et al.  Network-assisted crop systems genetics: network inference and integrative analysis. , 2015, Current opinion in plant biology.

[152]  G. Tuskan,et al.  Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. , 2013, The New phytologist.

[153]  Weixiong Zhang,et al.  Human gephyrin is encompassed within giant functional noncoding yin-yang sequences , 2015, Nature Communications.

[154]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[155]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[156]  Nataša Pržulj,et al.  Methods for biological data integration: perspectives and challenges , 2015, Journal of The Royal Society Interface.

[157]  Timothy H. Keitt,et al.  SCALE‐SPECIFIC INFERENCE USING WAVELETS , 2005 .

[158]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[159]  Eric J Duncavage,et al.  Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. , 2013, Cancer genetics.

[160]  Wendy S. Schackwitz,et al.  A 34K SNP genotyping array for Populus trichocarpa: Design, application to the study of natural populations and transferability to other Populus species , 2013, Molecular ecology resources.

[161]  Chung-Jui Tsai,et al.  Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression , 2016, Scientific Reports.

[162]  L. Stein,et al.  JBrowse: a next-generation genome browser. , 2009, Genome research.

[163]  Daniel A. Marcus Graph Theory: A Problem Oriented Approach , 2008 .

[164]  Xia Yang,et al.  Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration , 2016, BMC Genomics.

[165]  Ryan F. McCormick,et al.  The Sorghum bicolor reference genome: improved assembly and annotations, a transcriptome atlas, and signatures of genome organization , 2017, bioRxiv.

[166]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[167]  N. Young,et al.  Fine-Scale Population Recombination Rates, Hotspots, and Correlates of Recombination in the Medicago truncatula Genome , 2012, Genome biology and evolution.

[168]  Stephen J O'Brien,et al.  Accounting for multiple comparisons in a genome-wide association study (GWAS) , 2010, BMC Genomics.

[169]  B. Ulrich,et al.  The structure of linkage , 1987 .

[170]  Deborah A. Weighill,et al.  Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery , 2018, bioRxiv.

[171]  Ajaya K. Biswal,et al.  Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. , 2019, The New phytologist.

[172]  Deborah A. Weighill,et al.  Multi-Phenotype Association Decomposition: Unraveling Complex Gene-Phenotype Relationships , 2019, Front. Genet..

[173]  A. Ragauskas,et al.  Poplar as a feedstock for biofuels: A review of compositional characteristics , 2010 .

[174]  S. Henikoff,et al.  Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription , 2007, Nature Genetics.

[175]  T. Giordani,et al.  A survey of Gypsy and Copia LTR-retrotransposon superfamilies and lineages and their distinct dynamics in the Populus trichocarpa (L.) genome , 2015, Tree Genetics & Genomes.

[176]  Cranos M. Williams,et al.  Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis , 2018, Nature Communications.

[177]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[178]  R. Deal,et al.  Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq. , 2018, Methods in molecular biology.

[179]  S. Jackson,et al.  Gene Networks in Plant Biology: Approaches in Reconstruction and Analysis. , 2015, Trends in plant science.

[180]  Charles R. Farber,et al.  Systems-Level Analysis of Genome-Wide Association Data , 2013, G3: Genes | Genomes | Genetics.

[181]  Peter E. Larsen,et al.  Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction , 2016, Front. Plant Sci..

[182]  Gerald A Tuskan,et al.  Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. , 2018, The New phytologist.

[183]  Wendy Schackwitz,et al.  Nature Genetics Advance Online Publication Population Genomics of Populus Trichocarpa Identifies Signatures of Selection and Adaptive Trait Associations , 2022 .

[184]  G. Usai,et al.  Comparative genome-wide analysis of repetitive DNA in the genus Populus L. , 2017, Tree Genetics & Genomes.

[185]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[186]  C. Feschotte,et al.  Plant Transposable Elements: Biology and Evolution , 2012 .

[187]  Weiliang Qiu,et al.  Integrated genome-wide association, coexpression network, and expression single nucleotide polymorphism analysis identifies novel pathway in allergic rhinitis , 2014, BMC Medical Genomics.

[188]  Jian-Kang Zhu,et al.  Epigenetic regulation of stress responses in plants. , 2009, Current opinion in plant biology.

[189]  Christian Darabos,et al.  Using the Bipartite Human Phenotype Network to Reveal Pleiotropy and Epistasis Beyond the Gene , 2014, Pacific Symposium on Biocomputing.

[190]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[191]  D. Weston,et al.  Revisiting the sequencing of the first tree genome: Populus trichocarpa. , 2013, Tree physiology.

[192]  Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis , 2013, BMC Genomics.

[193]  Chad L. Myers,et al.  Unraveling gene function in agricultural species using gene co-expression networks. , 2017, Biochimica et biophysica acta. Gene regulatory mechanisms.

[194]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[195]  N. Street,et al.  Towards integration of population and comparative genomics in forest trees. , 2016, The New phytologist.

[196]  Xiaofeng Cao,et al.  Histone methylation in higher plants. , 2010, Annual review of plant biology.

[197]  J. Bennetzen,et al.  The contributions of transposable elements to the structure, function, and evolution of plant genomes. , 2014, Annual review of plant biology.

[198]  S. Narum,et al.  Beyond Bonferroni: Less conservative analyses for conservation genetics , 2005, Conservation Genetics.

[199]  R. Wu,et al.  Two‐stage identification of SNP effects on dynamic poplar growth , 2018, The Plant journal : for cell and molecular biology.

[200]  Michael Frazier Wavelets on ℤ , 2000 .

[201]  Niko Beerenwinkel,et al.  Network-based integration of multi-omics data for prioritizing cancer genes , 2018, Bioinform..

[202]  N. Provart,et al.  BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. , 2012, The Plant journal : for cell and molecular biology.

[203]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[204]  Henry D. Priest,et al.  Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression , 2012, BMC Genomics.

[205]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[206]  P. Schmitt‐Kopplin,et al.  Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms , 2010, BMC Plant Biology.

[207]  R. O’Neill,et al.  Transposable elements: genome innovation, chromosome diversity, and centromere conflict , 2018, Chromosome Research.

[208]  Peter Donnelly,et al.  The Influence of Recombination on Human Genetic Diversity , 2006, PLoS genetics.

[209]  Christian von Mering,et al.  STRING: a database of predicted functional associations between proteins , 2003, Nucleic Acids Res..